Elbow Method | Silhouette Coefficient Method in K Means Clustering Solved Example by Mahesh Huddar

แชร์
ฝัง
  • เผยแพร่เมื่อ 20 ธ.ค. 2024

ความคิดเห็น • 24

  • @monikaarya7434
    @monikaarya7434 ปีที่แล้ว +34

    K should be 5 not 3.

    • @MaheshHuddar
      @MaheshHuddar  ปีที่แล้ว +7

      That was a typo
      K should be 5 for Elbow method

    • @51_sajalgupta84
      @51_sajalgupta84 9 หลายเดือนก่อน

      send notes

    • @WellPlayedGamingYT
      @WellPlayedGamingYT 6 หลายเดือนก่อน

      @@51_sajalgupta84 bro why you need nudes???

    • @daffadistrict3
      @daffadistrict3 7 วันที่ผ่านมา +1

      @@51_sajalgupta84 have you never been taught manner by your parents?

  • @shreyashinde3212
    @shreyashinde3212 6 หลายเดือนก่อน +2

    this is the best video i've seen on elbow and silhouette method !! Thank you so much !!

    • @MaheshHuddar
      @MaheshHuddar  6 หลายเดือนก่อน

      Welcome
      Do like share and subscribe

  • @aiml66_bangerashashankchan81
    @aiml66_bangerashashankchan81 ปีที่แล้ว +1

    thank you sir this helped me a lot!

    • @MaheshHuddar
      @MaheshHuddar  ปีที่แล้ว

      Welcome
      Do like share and subscribe

  • @RajeshAwate-r9x
    @RajeshAwate-r9x 10 หลายเดือนก่อน +1

    Both the methods needs to form clusters right? So does we have to use k Means Algorithm to form clusters for both the Elbow and Shillote methods?

    • @adaobiokafor9546
      @adaobiokafor9546 10 หลายเดือนก่อน

      yes. you can use the elbow and silhouette methods for any partitioning algorithm that requires you to provide the value of k first eg in k means, k-medoids clustering etc. So assuming you have data, you can run it with let's say k = 10 or 20 first, applying the methods to choose the optimal number for k. With this optimal k value, say k = 3, you would then redo the clustering to get your final clustered data (without applying the methods).

  • @arpitakar3384
    @arpitakar3384 หลายเดือนก่อน +1

    The legend pic in black chasma..
    Thanks

  • @aashishshah1668
    @aashishshah1668 2 หลายเดือนก่อน +1

    very helpful

  • @romantsarev1145
    @romantsarev1145 ปีที่แล้ว +2

    I'm a bit confused.To apply the k-means algorithm, the number of clusters k must be determined. This can be accomplished through the elbow method or the silhouette method. However, each of these methods involves enumerating the values of k = 1, 2, 3,..... (

    • @adaobiokafor9546
      @adaobiokafor9546 10 หลายเดือนก่อน

      yes. you can use the elbow and silhouette methods for any partitioning algorithm that requires you to provide the value of k first eg in k means, k-medoids clustering etc. So assuming you have data, you can run it with let's say k = 10 or 20 first, applying the methods to choose the optimal number for k. With this optimal k value, say k = 3, you would then redo the clustering to get your final clustered data (without applying the methods). A computer would normally do all k's at once, you don't need to enumerate each k.

  • @romantsarev1145
    @romantsarev1145 ปีที่แล้ว +3

    Why did you chose the point X=5 (4:30)? Why not 3 or 7? Besides, as far as I understand you made a decision visually, but what if we calculate it on PC (with no visualisation)?

    • @modanmohanmanna1693
      @modanmohanmanna1693 3 หลายเดือนก่อน

      there is process in ml to visualize it

  • @NataliaRevenga
    @NataliaRevenga 25 วันที่ผ่านมา +1

    Why does the elbow method tell us that 5 is the optimum number of clusters, while the silhouette says 3? Why not 3 for the inertia as well, if there is also a bend at point 3?

  • @vijayjayaraman5990
    @vijayjayaraman5990 6 หลายเดือนก่อน

    How many centroids should we choose for each value of k

    • @MaheshHuddar
      @MaheshHuddar  6 หลายเดือนก่อน

      1 centroid per cluster
      Fo example: if you want 5 clusters hgen you need to select 5 centroids

  • @sherz1937
    @sherz1937 12 วันที่ผ่านมา

    watch out: the b(i) coefficient presents a misleading definition. It is the average distance between the point i and the points in the NEAREST cluster.

  • @ugursesiz1550
    @ugursesiz1550 ปีที่แล้ว

    thanks

    • @MaheshHuddar
      @MaheshHuddar  ปีที่แล้ว

      Welcome
      Do like share and subscribe