Microscopic Marvel in your Earbuds

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ม.ค. 2025

ความคิดเห็น • 820

  • @BreakingTaps
    @BreakingTaps  ปีที่แล้ว +629

    *Addendum*
    - The "tactile buzzer" is just the battery. Brain fart, not sure where my mind was when writing that out. Whoops! 😅
    - Some folks were curious how the middle gap between the layers is made. I don't know for sure, but it's likely that they used a sacrificial silicon dioxide* (SiO2 aka glass) layer in between the two "functional" layers. So the process flow would have been: pattern and etch bottom layer's array of holes, deposit a thick layer of SiO2, deposit and pattern subsequent polysilicon layers (doped or undoped), then finally etch out the SiO2 layer with HF or plasma. Then flip over and DRIE etch the big cavity from the backside. That is also likely why the dimples are dimple-shaped... they are just following the curve of the sacrificial layer that was filling the holes from the very first layer.
    *I suspect SiO2 because there was some EDS data (not shown in the video) which showed high concentrations of SiO2 right at the broken edge between the layers, where they meet at the "bulk" of the substrate. I think that's leftover from the sacrificial etch process.

    • @98f5
      @98f5 ปีที่แล้ว +10

      And here i was googling wtf a tactile buzzer is lol

    • @98f5
      @98f5 ปีที่แล้ว +1

      Your work continues to blow my mind also. Thank you for bringing this high quality educational entertainment to me. 😊😊

    • @jupa7166
      @jupa7166 ปีที่แล้ว +2

      I didn't catch it - I was too busy looking at that mems marvel (:

    • @eSKAone-
      @eSKAone- ปีที่แล้ว

      It's interesting we see no microorganisms. It's really work to keep things sterile.

    • @jonslg240
      @jonslg240 ปีที่แล้ว

      So did the rapper MIMS name himself after MEMS, or did MEMS get backronym'd from MIMS?
      Or is it just a coincidence?
      Either way 🤯 mind blown! 😂😂

  • @Vlaaaaaaaarp
    @Vlaaaaaaaarp ปีที่แล้ว +1866

    Honestly I might be most impressed by the fact that you made a 3d model of the microphone for a mere couple seconds of footage!

    • @DaveNagy1
      @DaveNagy1 ปีที่แล้ว +86

      Yeah, that was a really impressive render! Was that model hand made, or is there some way to automagically process SEM images into 3D models?

    • @novaenricarter705
      @novaenricarter705 ปีที่แล้ว +20

      @@DaveNagy1 I believe it was hand made as it looked different in many ways

    • @mu9600
      @mu9600 ปีที่แล้ว +53

      making conceptual basic 3d models is not that hard if someone has a good sense of 3d imagination.
      i find it crazier that he is able to break a thing many times smaller than a hair in two 🤯

    • @mwarnas
      @mwarnas ปีที่แล้ว +23

      And all that for ten bucks

    • @zyeborm
      @zyeborm ปีที่แล้ว +19

      ​@@DaveNagy1for sure hand made. The model itself would be pretty quick to make, but texturing, creating the environment, animating all that would take a decent amount of time.
      I'd imagine this would probably be something he modelled then sent out to an animator to render up. There's not a lot of cross over between cad modelling for engineering and pretty stuff sadly.
      That said I wouldn't put it past him to do it all himself, legend.

  • @Flumphinator
    @Flumphinator ปีที่แล้ว +348

    The fact that this sort of tech is $10 for a whole system is literally marvelous. 30 years ago this would be actual magic.

    • @jimurrata6785
      @jimurrata6785 ปีที่แล้ว +12

      Crazy. I just made much the same comment before seeing yours.
      It really is amazing how fast microelectronics has developed

    • @Flumphinator
      @Flumphinator ปีที่แล้ว

      @@jimurrata6785 I absolutely cannot wait to see what’s coming in another 30 years.

    • @GeraltOfRivia69
      @GeraltOfRivia69 ปีที่แล้ว +26

      Magic is technology not yet discovered

    • @pharaohsmagician8329
      @pharaohsmagician8329 ปีที่แล้ว

      ​@@GeraltOfRivia69exactly! Everything is possible

    • @Jose04537
      @Jose04537 ปีที่แล้ว +16

      "Any sufficiently advanced technology is indistinguishable from magic" Arthur C. Clarke

  • @smellycat249
    @smellycat249 ปีที่แล้ว +510

    Your video making skills are off the hook. I love the CGI of the microphone and all the beautiful imagery. Your hard work to make these videos is super appreciated.

    • @BraxtonHoward
      @BraxtonHoward ปีที่แล้ว +10

      The rendered footage was some of the best I've seen before on educational content.

    • @SomeSortaPro
      @SomeSortaPro ปีที่แล้ว +4

      I am in awe, I have gotten into microelectronics lately after watching lots of Asianometry videos and this visual exploration of this microphone was astonishing.
      Seeing the small features contrasted with a human hair really put everything in perspective in a wonderful way.

    • @andrew2004sydney
      @andrew2004sydney ปีที่แล้ว

      Awesome video!

  • @mattsains
    @mattsains ปีที่แล้ว +396

    It's perhaps not that surprising that you could create a capacitive microsphone from silicon, but what's mind-blowing to me is that it's such a good microphone. It doesn't seem obvious that you would be able to make a microphone that could do anything other than simply detect the presence of sound. Insane engineering to get to a useful microphone

    • @drkastenbrot
      @drkastenbrot ปีที่แล้ว +88

      key to it all is the perfect repeatability and precision of silicon lithography. the signal is very weak and the frequency response is terrible but it can be precisely characterised and corrected using the built in integrated circuit.

    • @mattsains
      @mattsains ปีที่แล้ว +1

      @@drkastenbrot cool

    • @revimfadli4666
      @revimfadli4666 ปีที่แล้ว +5

      ​@@drkastenbrotalso the ability to make an ic with that capability fit in there with such low power

    • @tookitogo
      @tookitogo ปีที่แล้ว +43

      What might blow your mind too are a type of sensor, found in most smartphones, smart watches, etc., which is closely related to MEMS microphones in their construction (and which in fact came first): MEMS barometers. Rather than the membrane being moved by sound, it’s got a sealed cavity so that as external air pressure changes, the air in the cavity expands or contracts, making the membrane bow in or out, changing its distance and thus the capacitance. What’s incredible is that they’re so sensitive that this is what your phone uses to detect changes in your altitude. Yes, your phone tells how many floors of stairs you climbed by measuring the difference in air pressure. So you might think it’s sensitive enough to measure a meter or two of altitude, right? Nope, they have a resolution of a few _centimeters._ I find it truly incredible that these sensors can actually tell the difference in air pressure over literally one palm’s width of altitude.

    • @heatshield
      @heatshield ปีที่แล้ว +4

      @@tookitogo it’s truly awesome tech. I remember figuring out that one of my old android phones had a Yamaha component for an accelerometer. Been pretty hooked on micro tech since then.

  • @klab3929
    @klab3929 ปีที่แล้ว +163

    "Buddy I can't hear ya, think you forgot your microphone in the electron microscope again"

    • @linecraftman3907
      @linecraftman3907 ปีที่แล้ว +3

      Sounds like vacuum in there!

    • @klab3929
      @klab3929 ปีที่แล้ว +2

      @@linecraftman3907 sounds like space!

  • @AlphaPhoenixChannel
    @AlphaPhoenixChannel ปีที่แล้ว +27

    I'm always blown away by how intricate fab stuff can get! way cool investigation

    • @multiarray2320
      @multiarray2320 ปีที่แล้ว +1

      you alao got access to a SEM, right? maybe investigating something like that would be a nice video idea as well :)

  • @ArchangelExile
    @ArchangelExile ปีที่แล้ว +711

    It's amazing that even a crappy $10 pair of earbuds has this much engineering put into it.

    • @blakeramsey3373
      @blakeramsey3373 ปีที่แล้ว +91

      exatly what i was thinking, its probably pretty "plug and play" for the manufacturers but still so cool

    • @DudeWhoSaysDeez
      @DudeWhoSaysDeez ปีที่แล้ว +75

      so much fabbed silicon in a cheap throwaway device

    • @unixux
      @unixux ปีที่แล้ว +120

      People don’t appreciate just how far we got

    • @fatcatzero
      @fatcatzero ปีที่แล้ว +70

      Economy of scale is a crazy thing

    • @AllisterCaine
      @AllisterCaine ปีที่แล้ว +27

      ​@@unixuxyeah... Instead they turn to magic creatures and conspiracy theories. You know, no way the Egyptians could have built the pyramids. Because people sure were dumber thousands of years ago. 😂

  • @ArriEllieJelly
    @ArriEllieJelly ปีที่แล้ว +52

    The 3d model of the mic kind of blew my mind. I loooooooooooove seeing stuff under electron microscopes, thank you for making this. Fantastic all around.

  • @Dynomat
    @Dynomat ปีที่แล้ว +22

    Also not a seasoned audio engineer here but my trivial explanation for the cavity below the membrane is, that it provides a neutral pressure reference against the outside. Thus the microphone becomes omnidirectional. If it would be open from the back, sound waves coming from the side would not be picked up. Thank you for that brilliant deep dive of a video!

    • @UNSCPILOT
      @UNSCPILOT ปีที่แล้ว +3

      huh, that's a concise but insightful bit of knowledge, and goes to explain quite a bit, thanks!

    • @BreakingTaps
      @BreakingTaps  ปีที่แล้ว +2

      Neat, TIL! Thanks for the explanation!

    • @commander-tomalak
      @commander-tomalak ปีที่แล้ว +9

      To my best knowledge, the size of the cavity vs. the diameter of the central hole define your lower cut-off frequency, otherwise this thing would be driven into saturation by low-frequency or static pressure.

    • @spvillano
      @spvillano 10 หลายเดือนก่อน

      @@commander-tomalak that's my thought. Vented microphone to control for VLF and barometric pressure, the cavity for resonance, the steps to tune and reflect various frequency harmonics. Impressive, given the frequencies used in narrowband telephony is around 300 - 3400 Hz, wavelengths ranging from around 45" - 4"!
      Yep, a quick lookup shows they're called a MEMS resonant microphone array.
      Here's a discussion on active noise cancellation using the technology.
      www.ncbi.nlm.nih.gov/pmc/articles/PMC7978172/

  • @jix177
    @jix177 ปีที่แล้ว +69

    Excellent explanation! Never realised there was so much complexity in there, it's certainly a lot more than just a tinier microphone!

  • @hinz1
    @hinz1 ปีที่แล้ว +17

    Absolutely crazy that something like this is 2x inside a $10 headphone, so each maybe 10cents, at most.
    300mm waver gives maybe 50'000, so a whole waver with bonding and everything for less than $5000.
    That "buzzer" most likely is the battery, btw.

    • @TheMrTape
      @TheMrTape 11 หลายเดือนก่อน

      There's probably just a single mic in one of the earbuds. Lookup "digikey mems mic" and you can find them starting at 47 cents each if you buy 1000. This is a US retailer selling reputable parts. If you get them directly from China, which is probably where these earbuds originate, they'd of course be significantly cheaper.

  • @cannack
    @cannack ปีที่แล้ว +21

    such an underrated channel
    I have so many other things to do today but your SEM experiments just have me glued, amazing stuff.

    • @spvillano
      @spvillano 10 หลายเดือนก่อน

      I told Santa that I wanted an SEM for Christmas. Unfortunately, he said that I was too heavy, get the fuck off of his lap.
      Back during the last Ice Age and I was in school, our junior high and high school had donated TEM units, which we were allowed to use. By the time my kids went to school, the electron microscopes were long gone, as were the optical microscopes.

  • @erbertvandesteen8527
    @erbertvandesteen8527 ปีที่แล้ว +35

    Dude, this is awesome to see so detailed and even broken open. And on top of that, as if that wasn't enough, you explain it all as well and even use super beautiful renders for that explanation!

  • @professordeb
    @professordeb ปีที่แล้ว +102

    Wow, excellent presentation. The SEM images and CGI blend perfectly. What an amazing piece of technology. I wonder if the dimples in the top layer are for controlling the stiffness of the disk.

    • @jakubnevaril9768
      @jakubnevaril9768 ปีที่แล้ว +9

      They would probably also help increase the capacity by enlarging the surface area when the membrane is close to the other electrode.

    • @victortitov1740
      @victortitov1740 ปีที่แล้ว +4

      i would speculate that it's mostly just a byproduct of how the thing is manufactured

    • @BreakingTaps
      @BreakingTaps  ปีที่แล้ว +4

      Thanks! I believe the dimples are _mostly_ an artifact of the manufacturing steps to make one. There are a few ways it could have been made, but my current theory is: pattern and etch the base substrate giving nice clean holes, deposit a layer of glass on top (which will naturally form rounded dimples over the holes), deposit another layer of undoped polysilicon and then a doped polysilicon layer, then finally etch out the sacrificial glass layer (with HF or plasma) leaving the gap between the two layers. Finally flip and etch the big cavity.
      Just a guess but it makes sense to me. The holes in the lower layer are to help air move past it with minimal resistance, but the dimples on the surface aren't really needed. So I think it's leftover from the layered nature of fabrication.

    • @professordeb
      @professordeb ปีที่แล้ว +1

      @@BreakingTaps You mean a totally flat disk without dimples could not be fabricated? I wouldn't expect that, but I don't know anything about processes at this micro level. I'm just blown away that they actually work as well as they do. Are neodymium magnets used at this scale?

    • @BreakingTaps
      @BreakingTaps  ปีที่แล้ว +4

      ​@@professordeb It's technically possible to get a flat disk on top of the hole'y layer, but it would be a lot more work. There's another process called "chemical-mechanical planarization" which is basically a super fancy sand paper for wafers 😁 It's used to flatten the top layer by grinding/polishing until all the ridges are gone. It's often used on high density microchips like computer CPUs, because you have soooo many layers that everything starts to get rounded. So they periodically flatten it with the planarization tools.
      So to get a flat surface for this device, you'd deposit a really thick sacrificial layer, then grind it back flat, then proceed with the next steps. But if you don't _need_ it to be flat, you can skip and save money.
      Magnets aren't used a lot at this scale because (I think) the magnetization process needs high temperatures and it can be difficult for the devices to survive. Although I've seen some papers about using laser-heating and such, so I'm sure it's doable.
      At this size, electrostatic, thermal and piezo mechanisms tend to be more common.

  • @shimondoodkin
    @shimondoodkin ปีที่แล้ว +8

    the way this microphone works is, there is a small hole that allows to equalize the pressure between the inside and outside of the chamber slowly later when pressure is applied to the top the fluctuations are relative to the mean pressure.

    • @spvillano
      @spvillano 10 หลายเดือนก่อน

      The cavity is a resonant chamber. The microphone is referred to as a MEMS resonant microphone array. Pair them up and one can have quality active noise cancellation.
      The cavity is a resonant chamber, the steps for different frequencies.

  • @danielangeles86
    @danielangeles86 11 หลายเดือนก่อน +2

    I work at a very old 200mm semiconductor fab as an equipment engineer. One of my processes is polysilicon deposition through LPCVD. Hearing these terms in a video about mics in earbuds is awesome.

  • @AnotherAperture
    @AnotherAperture ปีที่แล้ว +1

    Love the work, will sign up for Patreon

  • @danny_racho
    @danny_racho ปีที่แล้ว +4

    You just spoke about almost every topic I had in my master's degree lecture "Physical Sensors in Silicon Technology", we also had the etching process RIE (Plasma etching - Reactive ion etching) explained in details in there. Thank you for making this video, I just finished my university degree and it's cool to see some practical stuff for a change!

    • @spvillano
      @spvillano 10 หลายเดือนก่อน

      The MEMS resonant microphone array is a fascinating technology, especially the tiny resonant chamber within the unit.

  • @garygenerous8982
    @garygenerous8982 ปีที่แล้ว +6

    Thank you for making these videos. They really help give perspective on this extremely tiny yet extremely impactful part of all our lives. Plus the SEM images and CGI you make are absolutely beautiful to look at.

  • @user-pd5ot4zd4b
    @user-pd5ot4zd4b ปีที่แล้ว +7

    This is great! Hah, I just bought these ONN buds on sale for ~10$ and they work great as a basic hands/wires free headset. I was marveling at the amount of tech crammed into these cheap lil guys and you've revealed their innermost secrets :D Always enjoy your microscopy.

  • @walmi328
    @walmi328 11 หลายเดือนก่อน +1

    The fact people figured out how to make this stuff!!! It’s insane to think about. We don’t give ourselves enough credit as a species.

  • @StingrayOfficial
    @StingrayOfficial ปีที่แล้ว +3

    Man I am glad I found your channel. This stuff is awesome. TY

  • @samroesch
    @samroesch ปีที่แล้ว +2

    I’d love to know more about the hole pattern. Most is a hexagonal fill which is good for maximum density and uniformity. Edges are concentric rings, and in between is a hybrid.

  • @_spartan11796
    @_spartan11796 ปีที่แล้ว +5

    Your animations are fantastic!

  • @marklundeberg7006
    @marklundeberg7006 ปีที่แล้ว +2

    Why there is such a big cavity: my guess is that it is simply to do with ease of manufacture. They first make all the structures on top, then flip it over and etch through from the backside. Importantly they also intentionally leave a controlled-size hole that allows internal pressure to equalize over a controlled time (e.g. if device takes a plane ride or happens to be put in a vacuum during further processing), not too slow but not too quickly that the device wouldn't be able to pick up bass.
    Given the tiny size of the cavity, it can't have anything to do with acoustic resonances.

    • @chasingcapsaicin
      @chasingcapsaicin ปีที่แล้ว +2

      Has everything to do with acoustic resonances, and there are much more ambitious ones in the public market.

  • @AndrewZonenberg
    @AndrewZonenberg ปีที่แล้ว +4

    These microphones typically have a digital output using "pulse density modulation", where the rate of toggles encodes the analog signal value. The three ports coming off the control die are almost certainly power. ground, and audio out.
    Also +1 for DRIE video. That was the first thing I noticed when you cracked it open. The Bosch process is cool!

    • @spvillano
      @spvillano 10 หลายเดือนก่อน

      I counted 7 heavy etchings on one component, couldn't get a good count for thinner etchings for things like the resonant chamber.
      Then, I considered how many ways I could badly injure myself on the equipment that builds these devices... Ion beam, HF, yeah, gotta be a pain to maintain those machines!

  • @Frell1982
    @Frell1982 ปีที่แล้ว

    Awesome video! Thanks

  • @hagen.360
    @hagen.360 ปีที่แล้ว +1

    I love electron microscopes and pictures they produce.
    Really like to watch your content.
    I always learn something new.
    Thank you!

  • @hadinossanosam4459
    @hadinossanosam4459 ปีที่แล้ว +2

    I would guess the large cavity behind the membrane matters for the microphone's frequency response: Most practical microphones don't want to react to slow changes in ambient air pressure, because those can easily be much bigger than typical sound pressure levels, and could blow out the membrane. This is what the small hole in the middle of the membrane is for, to let the pressure equalize on both sides of the membrane (equivalent to a high-pass filter). Of course, if the equalization is too fast, then it can also equalize out low-frequency sounds, which would impact the frequency response of the microphone. The speed of this equalization depends on the hole size and the volume behind the hole (similar to a Helmholtz resonator with an additional loss term), so the manufacturer will tune either the hole size or the volume behind the membrane to set this frequency to a sensible value - I think 1-2Hz are typical for typical electret microphones.
    I would guess, then, that the hole is already as small as feasible in this process, for some reason or another. Then it would make sense for the manufacturer to make the volume larger (requiring more etching steps) in order to improve the frequency response at low frequencies.

    • @foobargorch
      @foobargorch ปีที่แล้ว

      can you explain what's the additional loss term?

  • @martylawson1638
    @martylawson1638 ปีที่แล้ว +4

    The amplifier for the microphone looks quite interesting too. Looks like too many parts to be purely an analog amplifier. I wonder if they're driving the microphone with AC and de-modulating to get the audio?

  • @viniciusnoyoutube
    @viniciusnoyoutube ปีที่แล้ว +2

    Incredible video with stunning visual and intriguing explanation.
    Keep the good work.

  • @welkombijpraxis
    @welkombijpraxis ปีที่แล้ว +12

    Sick, never knew how they fit microphones into those earbuds, thanks for showing!

  • @mikestewart4752
    @mikestewart4752 ปีที่แล้ว +5

    Really cool video dude! I just hooked up a MEMS mic to my WLED display for music reactivity. Cool to see exactly how these little pieces of “fly sh!t” actually work! Merry Christmas!!!

  • @Alorand
    @Alorand ปีที่แล้ว +1

    What amazes me is the price of this tiny marvel being under $1.

  • @Finlaymacnab
    @Finlaymacnab ปีที่แล้ว +5

    Nice work. This looks surprisingly easy to make.

  • @Badspot
    @Badspot ปีที่แล้ว +1

    Ordinary ceramic capacitors can also respond to sound. I've seen speculation that this effect could be used to turn ordinary electronics into surveillance devices but I haven't seen a proof of concept yet.

  • @isthisnecessary1992
    @isthisnecessary1992 10 หลายเดือนก่อน +5

    What happened to the video "The Science of SpaceX Starship's Thermal Tiles" which was up until a few hours ago?

    • @rustymundorf4672
      @rustymundorf4672 10 หลายเดือนก่อน

      I came looking for it to send to a friend. I found a link to it on Hackaday, but it was listed as private. I wonder what happened?

    • @fabiodlx
      @fabiodlx 10 หลายเดือนก่อน

      Me too!

    • @oliverer3
      @oliverer3 10 หลายเดือนก่อน

      Same I wanted to rewatch it :(

  • @AgentWest
    @AgentWest ปีที่แล้ว +3

    Interesting to see the ridges inside that microphone cavity. At first i thought they were there to help with echo and reflections, similar to how some speaker boxes deal with it. Now I'm wondering if the etching process is calibrated to make those ridges a certain size specifically for essentially tuning it.

  • @4dirt2racer0
    @4dirt2racer0 ปีที่แล้ว

    around 3:23 that chip looks like it was cut by shearing, instead of with a cutoff wheel. a cutoff wheel leaves a clean edge, shearing leaves that sharp clean beginning of cut then it kinda just breaks

  • @gingermany6223
    @gingermany6223 ปีที่แล้ว +6

    Just one correction. The balls at the ends of the bond wires are tiny solder bumps and not Au balls. Solder bumping, wire bonding, die stacking and 3D packaging in general would make a great episode!

    • @maxenielsen
      @maxenielsen ปีที่แล้ว

      Commonly, after making the bond to the lead frame (after first bonding to the bond pad on the chip) the wire-bond machine severs the wire with an electric arc. This arc produces a spherical blob of molten wire, which cools and solidifies. That little ball is right below the surface of the bonding foot. So when the bonding foot is pressed down onto the next bond pad on the chip, it compresses the ball onto the bond pad, creating the electrical and mechanical connection to the bond pad.
      So the little balls are of gold or aluminum, whatever the bond wire metal happens to be.

    • @maxenielsen
      @maxenielsen ปีที่แล้ว

      Now, where chips are bonded directly to each other or PCB, the balls are usually made of solder or tin or indium. Actually, they are referred to as bumps for this kind of bonding operation.

  • @JorenVaes
    @JorenVaes ปีที่แล้ว

    What is interesting about the bond-wire at 4:40 is that the bondwires seem to be mounted on top of a gold ball. If it was ball bonding, I would expect a clean transistion from the 'mushroomed' out ball to the wire, but this is not the case, you can clearly see that the wire itself has been smooshed (through what looks like wedge bonding) onto the gold ball.

  • @wouldntyaliktono
    @wouldntyaliktono ปีที่แล้ว +2

    I look forward to these posts so much. It's the highlight of an otherwise rather mundate youtube experience for me.

  • @That_Chemist
    @That_Chemist ปีที่แล้ว

    This was awesome - I will be subbing!

  • @FM-not-AM
    @FM-not-AM 2 หลายเดือนก่อน +1

    I'm kinda surprised you didn't mention the outer layer's hundreds of dimples. They're convex parabolic cones (Dimples 3:37) that directs the sound waves around the the actual mic pickup. Being such a small device the time delay of the different waves is infinitesimal. All this multi magnifies minute sound waves much like cupping your hand around your ear. KEWL VID, THANKS

  • @pragmax
    @pragmax ปีที่แล้ว +2

    The geometry of the whole thing is interesting. The dimples probably make the upper membrane more stiff, and might have been calculated or arrived at experimentally. Stiffness is useful in this application as you don't want to respond to the inertia of the membrane itself (flopping around). The chamber below is indeed for resonance, and it should be possible to physically measure it and calculate what frequencies it is sympathetic to; my bet is that it works really well for key frequencies in "toll-quality" audio (voice). I'm also betting that the device is good at picking up low audio frequencies from whatever it's mounted to, letting the whole earbud vibrate as an extension of the sensor.

    • @DanielFSmith
      @DanielFSmith ปีที่แล้ว +1

      Spitballing... I imagine the dimples are to make the upper membrane less stiff. Stiff membranes resonate---like a drumskin---and you want as little resonance as possible; while still attaining high deflection for gain. (High Q, high amplitude voltage ringing, even above hearing frequency, can upset amplifiers.)

    • @cheyannei5983
      @cheyannei5983 ปีที่แล้ว

      I'll add my own unqualified take into the pot: it's silicon. It probably has a really wonky breakup pattern that the dimples help with!
      Only joking! It's a cheap MEMS mic, guys. They probably just make the capacitance less spiky and mic a bit more sensitive since the holes are under the dimples. The only design features here are to loosen tolerances or lower cost.
      But the cavity under just seems like a classic Helmholtz resonator. It likely is for tuning.

    • @ELYESSS
      @ELYESSS ปีที่แล้ว

      I was thinking they did it to make the surface area of the diaphragm a little bit bigger. Maybe even tune it to a specific frequency.

  • @asdf8asdf8asdf8asdf
    @asdf8asdf8asdf8asdf ปีที่แล้ว

    Thanks!

  • @filmweaver2013
    @filmweaver2013 ปีที่แล้ว

    It’s just FASCINATING to say the least to not only come up with such solutions but make them at scale for dirt cheapp! That work sooo well! The amount of research, knowledge, experience, and creativity of these engineers is legendary

  • @jamm8284
    @jamm8284 ปีที่แล้ว +4

    The pattern of the dimples is interesting, it seems like a thought through pattern, I wonder how much different patterns, depths and shapes of dimples would alter the sound.

    • @setituptoblowitup
      @setituptoblowitup ปีที่แล้ว +1

      I can't see u😂

    • @pedroamaral3935
      @pedroamaral3935 7 หลายเดือนก่อน

      It’s called anti-stiction bumps… to unmute the mic after an high sound event or mechanical shock

  • @CwanaPizda
    @CwanaPizda ปีที่แล้ว

    Wow, that was a truly incredible video. I was especially surprised and delighted with the model and animation you created to explain how the device works. I know that in terms of the principle of operation it is quite a simple device, but the scale of miniaturization and the way you presented it make me want to show it to my wife, children and friends. I am really impressed with your channel - keep up the good work. Regards

  • @Freelancer604
    @Freelancer604 ปีที่แล้ว

    Im actually more amazed at the quality of this video than anything else.. and wow, SEMs have really improved over the last decade or so.

  • @oliverfalco7060
    @oliverfalco7060 ปีที่แล้ว +1

    You should have recorded the audio of this video in an airbud mic

  • @thavinator
    @thavinator ปีที่แล้ว

    I guess the dimples would cause a nonlinear response to displacement? It's hard to tell what the neutral position is between the dimples and holes, but it looks like the dimples don't quite cross the holes. If I'm imagining this right, at low SPL/small deflections you'd get an initially sharp response as the dimple intrudes into the hole, and the changing size of the annular gap as the curve of the dimple passes the hole dominates the response. Once the straight(ish) part of the dimple enters the hole, the annular gap stops changing and the overall motion of the plate creates the response at higher SPLs. Pretty neat way to balance sensitivity and dynamic range if that's what they're doing.

  • @sirBumpyCase
    @sirBumpyCase ปีที่แล้ว +3

    I have to remind myself that this is only one component out of a $10.00 pair of earbuds.

  • @LesLaboratory
    @LesLaboratory ปีที่แล้ว +1

    Absolutely fantastic as always! Man I wish I had and SEM to play with!

  • @neohippyfreetheworld3398
    @neohippyfreetheworld3398 ปีที่แล้ว +1

    This has answered questions I didn't know I had 👏

  • @landonkryger
    @landonkryger ปีที่แล้ว +5

    My Pixel Buds came with a warning that they have a Class 1 laser inside. Any idea what that might be used for and are lasers of this size particularly interesting?

    • @defenestrated23
      @defenestrated23 ปีที่แล้ว +2

      Laser microphones are a thing, but I'd be shocked if that was the actual use case. Seems like a more complex and lower fidelity approach. A quick search suggests it's an IR laser to detect when the bud is in an ear.

  • @antonio_carvalho
    @antonio_carvalho ปีที่แล้ว

    What a perfectly paced video, I couldn't stop watching it. Thank for you the impressive images and insightful analysis!

  • @joppepeelen
    @joppepeelen ปีที่แล้ว

    it works like a reverse electrostatic speaker. size is not audio quality related.. in fact a small membrane would be able to pickup high frequencies from all directions like a true omni direction mic. only downside of such small mic might be efficiency or noise floor

  • @dryatish2102
    @dryatish2102 11 หลายเดือนก่อน

    This was on my feed since it was on TH-cam.. but was scrolling down.. but after seeing the reel had to watch the full video..
    Absolutely amazing. The amount of tech that goes in inside 10 dollar microphone just blows my mind..

  • @LanceThumping
    @LanceThumping ปีที่แล้ว +4

    I'm curious about the details on it's response curve and if others can be made with different geometry with different curves. It's be cool to see tiny arrays of these that have insane sound quality.

    • @icediverfull
      @icediverfull ปีที่แล้ว

      Thats exactly my thought also!

  • @kriseckhardt5148
    @kriseckhardt5148 ปีที่แล้ว

    EXCELLENT! This has been a long time coming. Thank you!

  • @SaccoBelmonte
    @SaccoBelmonte ปีที่แล้ว +6

    Fascinating. Thank you for the detailed explanation of how these mics work. Now I see my earbuds in a different way.

  • @WetDoggo
    @WetDoggo ปีที่แล้ว

    6:54 the strip appears to be continuing on the lowest level, the steps and rounding are artifacts of depositing uniform thicknesses of additional layers.
    The layers on top of the lowest features only appear to also have the feature.
    ... meaning, the strip only appears to be deposited on top, if you ignore the rounded edges from additional layers on top of the original feature.
    I'm not sure if you understood that, since to me it seems like you implied that...
    anyways really awesome to see tiny devices like that 👌

  • @wolpumba4099
    @wolpumba4099 ปีที่แล้ว

    *Summary*
    - *0:00* A microphone is crammed inside a tiny earbud, and the video will explore its internal structure.
    - *0:07* Introduction to the concept of micro electromechanical microphones, which are much smaller than traditional microphones and can fit inside earbuds.
    - *0:24* Description of miniature microphones like electrostatic ones, which are smaller but still too large for earbuds. The need for even smaller devices fabricated from silicon wafers is highlighted.
    - *0:46* A $10 pair of earbuds is opened to reveal its internal components, including the speaker, buzzer, charging magnet, and a long PCB with microchips and a tiny microphone.
    - *1:17* Examination of the tiny microphone, which is about 3mm long, using an optical microscope. The microphone is a square block of silicon with a pattern of holes.
    - *1:50* Detailed analysis of the microphone's structure, including its size (under a millimeter wide), the arrangement of gold bonding wires, and the layers of the device.
    - *3:22* Exploration of the microphone's internal structure, revealing a second layer beneath the first, and speculation about the function of the deep cavity underneath the layers.
    - *4:27* Discussion of how the MEMS microphone converts sound waves into electrical signals using a silicon membrane and capacitive changes. The top dimpled surface is the vibrating membrane, and the chip amplifies these vibrations.
    - *6:14* The video shows the intricate etching process used to create the microphone's cavity, highlighting the deep reactive ion etching (DRIE) technique.
    - *8:16* Conclusion that MEMS microphones, while simpler than other MEMS devices, provide excellent audio quality and are widely used in cell phones and earbuds. The video ends with a thank you to Patreon supporters and a recommendation for another video on MEMS technology.

  • @fluffy_tail4365
    @fluffy_tail4365 ปีที่แล้ว +3

    wait wait wait. How do they etch the giant hole and then make the membrane on top?? Do they come from the back?

  • @WKRPinCINN
    @WKRPinCINN ปีที่แล้ว +1

    Any headphone can be a microphone.

  • @everything_Burnz
    @everything_Burnz ปีที่แล้ว

    Thought I was subscribed here a long time ago… apparently I was wrong, so I remedied that and hit the like button while I was at it (I know I’ve done that before). Great work, concise explanations and descriptions that cater to the layman without condescending or even a hint of pretense in your tonal delivery. Kinda wanna have a beer with you, even though I hung up the drinking habit half a decade ago now. Keep up the good work and when I have expendable dollars again here in the near future, I’ll drop a few of them off over at your patreon. Until the next one, Bravo, good sir!

  • @HuygensOptics
    @HuygensOptics ปีที่แล้ว

    Great video and images! If you have a fine diamond saw or pad, you might consider grinding off material from the side, instead of breaking it open. In that way you can make reasonably clean cross sections, especially with the use of some extra resin.

    • @BreakingTaps
      @BreakingTaps  ปีที่แล้ว +1

      Will try that on the next one! I admit to being a bit lazy and just smashed it with some tweezers haha

  • @scottfranco1962
    @scottfranco1962 ปีที่แล้ว

    MEMS is the quiet revolution. That tiny microphone, tiny sensors, gryoscopes on drones and modern airplanes, all done with MEMS. It started as engineers seeing other applications for IC processes than just electronics and making such things as working microscopic motors, but then quickly advanced to more useful concerns.

  • @hubertshingle6521
    @hubertshingle6521 ปีที่แล้ว +1

    thank you for creating and sharing this, that was amazing and enlightening

  • @Sky-AuMmMmM
    @Sky-AuMmMmM 27 วันที่ผ่านมา

    Wow…it’s really amazing!! U can explain difficult things for us to understand brilliantly and the content used is very good.💪❤️

  • @szaszafaja
    @szaszafaja ปีที่แล้ว

    Oh wow this is amazing!! Thank you for making such a detailed video about it!

  • @codythep
    @codythep 11 หลายเดือนก่อน +1

    Crazy... Thank you!

  • @andrea9230
    @andrea9230 6 หลายเดือนก่อน

    This is an amazing and very detailed video! Loved it! If I could give one suggestion though, I think it would be less distracting if you kept the same tone to the voice throughout any sentence, instead of starting each line with a high pitch and then ending them with a really deep voice. Anyways, beautiful video!

  • @big_whopper
    @big_whopper ปีที่แล้ว

    The back cavity is to allow space for the membrane to vibrate. The combination of the stiffness of the membrane and the volume of the cavity form the equivalent of an LC circuit, and you want the resonant frequency above 20khz, so the frequency response is flat in the audible range

  • @bobaloo2012
    @bobaloo2012 ปีที่แล้ว +1

    I hope you still get a thrill every time you say "now let's look at it under the electron microscope..."

  • @tostada_gaming_93
    @tostada_gaming_93 ปีที่แล้ว

    The quality of these videos never ceases to amaze me :)

  • @oetken007
    @oetken007 ปีที่แล้ว

    07:18 A microphone can only detect pressure differences. If both sides of the membrane are exposed to the same preasurechange, nothing or next to nothing is detectable.

  • @Aqquinox
    @Aqquinox ปีที่แล้ว +1

    Im not sure if its a microphone from a different manufacturer but I saw the actual MEMS wafers with the holes in it. The poly etchers basically punch holes in them via bosch process to go down so far without having an profile with an angle. A lot of loops.

    • @BreakingTaps
      @BreakingTaps  ปีที่แล้ว +1

      Bosch process is absolutely wild! Especially the more refined variants that can etch with much smoother sidewalls.

  • @OkammakO
    @OkammakO ปีที่แล้ว +2

    Awesome! A new microscopy video!

  • @Splarkszter
    @Splarkszter ปีที่แล้ว

    eally really cool, informative and educational. Thank you so much!!!
    I loved all the angles and even the 3D model that i have now idea how you got it.
    You, are, amazing!

  • @d3liverancee
    @d3liverancee ปีที่แล้ว

    Your video quality blows me away

  • @bertholtappels1081
    @bertholtappels1081 ปีที่แล้ว +1

    Back of napkin calculation..: I'm eyeballing from this video that the membranes are about 0.5mm in diameter, say 0.2mm^2 surface area. Seems like the plate separation is 20 micron-ish. Plate capacitance calculation: 0.88pF. Grossly oversimplifying I'm assuming total harmonic audio distortion, say 0.1%, correlates linearly with the capacitance variation, say 0.88pF/1000=0.88fF. Less than ONE FEMTO Farad. This is just crazy. Even if I'm two orders of magnitude off, it is still crazy.

  • @jasonstollznow1413
    @jasonstollznow1413 ปีที่แล้ว

    Thanks

  • @Hellawacked
    @Hellawacked ปีที่แล้ว

    Always a pleasure to see a new video from you.

  • @arrowblueberri
    @arrowblueberri ปีที่แล้ว +1

    I didn’t know Thor was in my earbud 😮

  • @jeffmcdonald101
    @jeffmcdonald101 ปีที่แล้ว

    Really enjoy all your videos mate, great work!

  • @BearsOnASubmarine
    @BearsOnASubmarine ปีที่แล้ว

    What a fascinating dive into cool microscopic engineering. Great video all round!

  • @rejvaik00
    @rejvaik00 ปีที่แล้ว

    I feel like the advent of the transistor is really under appreciated
    Because we would never have been able to reach this small of a scale in electronics had the transistor never been invented

  • @maxenielsen
    @maxenielsen ปีที่แล้ว

    Back in 2003 a company called Akustika built a MEMS capacitive microphone on a CMOS chip. The chip was about 2mm on a side and the microphone was a membrane of oxide and metal over a cavity. The CMOS chip also had a preamplifier and an analog-to-digital converter. So the chip produced a digitized signal with only a connection to an external battery. Total harmonic distortion was hi-fi quality and noise was low enough for use in hearing aids. This was an early prototype. Akustika designed the microphone. I and a colleague designed the preamp and ADC. After fabrication in a CMOS foundry Akustika did the additional processing to fully develop the microphone structure. It worked.
    The device you show has separate microphone and preamp dice. Probably also a pretty decent performing device. What people are doing these days with MEMS is stunning.
    Thanks for the video!

    • @maxenielsen
      @maxenielsen ปีที่แล้ว

      Correction: the company name was Akustica, rather than “Akustika”. Akustica is now part of Bosch.

  • @eugenefrancisco8279
    @eugenefrancisco8279 ปีที่แล้ว +1

    When you find a topic that you are interested in or want to cover, how do you go about learning about it?

  • @deezeemb
    @deezeemb ปีที่แล้ว

    I'm amazed at how polished the second layer appears under the Electron Microscope!

  • @Mushbee
    @Mushbee ปีที่แล้ว

    This kind tech content is mesmerizing, I'm far from understanding how all this parts connect and talk to each other, but its exciting to see what can be done.

  • @Gaijin101
    @Gaijin101 ปีที่แล้ว

    Holy moly the presentation and info is so onpoint

  • @womacko
    @womacko ปีที่แล้ว

    This was so fascinating to watch! Thank you much. I just stumbled accros your channel and you got so much more videos :O

  • @nicknorthcutt7680
    @nicknorthcutt7680 ปีที่แล้ว

    Seriously the most impressive microscopic images I've ever seen.

  • @makebreakrepeat
    @makebreakrepeat ปีที่แล้ว

    I really needed a bit of marvel and wonderment today. Thank you!

  • @matthewvenn
    @matthewvenn ปีที่แล้ว

    ooh, your blender animations are getting really good!

  • @aymansaleh7019
    @aymansaleh7019 ปีที่แล้ว

    As an engineer, it has been a long long time since the last time I was curios & actually had fun watching electronics under a microscope.
    Thank you