Can you find area of the Blue shaded Rectangle? | (Two Methods) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ม.ค. 2025

ความคิดเห็น • 74

  • @predator1702
    @predator1702 6 หลายเดือนก่อน +4

    This is awsome 👍, thank you teacher 🙏.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Glad you liked it!
      You are very welcome!
      Thanks for the feedback ❤️

  • @montynorth3009
    @montynorth3009 6 หลายเดือนก่อน +8

    Note that point E is not at a fixed position on the circumference, the only requirement is that AE =18.
    This means that both the radius & dimensions of the rectangle are not fixed.
    If Point E coincides with point F, then we have a semicircle of radius 9, and a rectangle of height 9 & width 18.
    Hence 9 x 18 = 162.

    • @jimlocke9320
      @jimlocke9320 6 หลายเดือนก่อน

      Agreed! This is the special case where right ΔABE has collapsed into a straight line and is the limiting case as EF approaches 0. The problem statement implies that the area of rectangle ABCD is the same for all valid lengths EF. One could argue that EF = 0 is not valid because the lines connecting A, B and E not longer form a triangle. However, EF can be infinitesimal and we still have a triangle, as long it is not zero.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

    • @alexshelest1937
      @alexshelest1937 6 หลายเดือนก่อน

      @@jimlocke9320 So if EB tends to r? Then our rectangle will have area about 81 sq.un.

    • @MarieAnne.
      @MarieAnne. 5 หลายเดือนก่อน +1

      @@alexshelest1937 No, if EB = r, then B coincides with O and E coincides with C (at top of circle) and we get a square with side length r (which is no longer 9) and diagonal 18. We could calculate r, but we'll use area formula for square with diagonal d.
      Area = (d^2)/2 = (18^2)/2 = 162

  • @ivorauh341
    @ivorauh341 6 หลายเดือนก่อน +4

    Just solved it via Pythagoras: 18^2= (r+OB)^2 + BE^2 and r^2= OB^2 + BE^2 and A= r*(r+OB) => A=r^2+r*OB and 18^2=r^2 +2*r*OB +OB^2 + BE^2; substitute OB^2+BE^2 by r^2 results in 18°2=2(r^2+rOB) and finally substituting A=r^2+r*OB results in 18^2=2*A => A=9*18=162. Makes sense?

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

    • @Alleswirdgut0501
      @Alleswirdgut0501 6 หลายเดือนก่อน

      Genious

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 6 หลายเดือนก่อน +1

    Very nice sharing Sir ❤❤

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Thanks for visiting

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt หลายเดือนก่อน

    Thanks again i wish you a good years

  • @ashutoshkumardalei3264
    @ashutoshkumardalei3264 6 หลายเดือนก่อน +1

    Awesome explanation 🎉

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Glad you liked it!
      Thanks dear ❤️

  • @jamestalbott4499
    @jamestalbott4499 6 หลายเดือนก่อน +1

    Thank you!

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      You are very welcome!
      Thanks a lot ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 6 หลายเดือนก่อน +2

    EOB=2arccos(9/r)...Ablue=2r*r-r(r-rcosEOB)=2r^2-r^2+r^2(2*(9/r)^2-1)=r^2+r^2(162/r^2-1)=162

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @davesusko3517
    @davesusko3517 6 หลายเดือนก่อน +1

    It is interesting that the radius cancels in the final equation which means the area is independent the radius and any rectangle with the similar configuration (ncluding a square will have the same area.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for the feedback ❤️

  • @TimothyCizadlo
    @TimothyCizadlo 6 หลายเดือนก่อน +3

    Given that the area of ABDC = AD*(AO+OB) ∴ ABDC=(r)*(r+OB). ∴ (AO+AB)^2+(BE)^2=AE^2 & (OE)^2=(OB)^2+(BE)^2 ∴ 2*(r^2+(r+OB))=324 ∴ ABCD = 162.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @JSSTyger
    @JSSTyger 6 หลายเดือนก่อน

    To me, this appears to be a "minimal information" problem. We cant solve for the radius or the height of the triangle but we know they are dependent on eachother. If I choose h = 0, it will make r = 9. The area of the rectangle would the be 9(18) = 162.

  • @rey-dq3nx
    @rey-dq3nx 6 หลายเดือนก่อน +3

    Let l= length
    r= width
    Area=lr
    EB²=r²-(l-r)²
    EB²=18²-l²
    r²-l²+2lr-r²=324-l²
    2lr=324
    lr=162 sq units

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @jimlocke9320
    @jimlocke9320 6 หลายเดือนก่อน +2

    The tricky part here is that the lengths of the sides of rectangle ABCD are variable but their product is a constant. We can not solve for the value of r because there is a range of values for r which are valid.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Right on!
      Thanks for the feedback ❤️

    • @MarieAnne.
      @MarieAnne. 5 หลายเดือนก่อน

      Any value of r greater or equal to 9 is valid. When r < 9, then diameter < 18, so there can be no chord = 18, since the diameter is the longest chord in a circle.

  • @hongningsuen1348
    @hongningsuen1348 6 หลายเดือนก่อน +2

    Method using Thales theorem, Pythagoras theorem and similar triangles:
    1. Let radius be R.
    2. Triangle AEF is right-angled triangle by Thales theorem.
    Hence EF^2 = (2R)^2 - 18^2 = 4R^2 - 324 by Pythagoras theorem. (equation 1)
    3. Triangles AEF and EBF are similar (AAA)
    Hence EF/BF = AF/EF
    (EF)^2 = (AF)(BF) = (2R)(BF) (equation 2)
    4. From equations (1) and (2)
    4R^2 - 324 = (2R)(BF)
    4R^2 - 2(R)(BF) = 324
    2R^2 - (R)(BF) = 162
    4. When DC extends to DC' such that DC' = AF, area of rectangle ADC'F = 2R^2 and
    Area of rectangle BCC'F = (R)(BF)
    Area of ABCD = area ADC'F - area BCC'F = 2R^2 - (R)(BF) = 162

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @als2cents679
    @als2cents679 6 หลายเดือนก่อน

    Again, since there are no variables, it means that the blue area is constant, take the special case where the semi-circle is inscribed in the rectangle meaning B, F, and E are all the same points and [AE] is now a diameter of the circle, meaning [AE] = 2 r = 18
    This gives r = 9 and the sides of the rectangle as r and 2 r
    Area of rectangle = 2 r^2 = 2 * 9^2 = 2 * 81 = 162 square units.

  • @govindbhaipatel8253
    @govindbhaipatel8253 6 หลายเดือนก่อน

    Good Method
    From Gujrat

  • @anatoliy3323
    @anatoliy3323 6 หลายเดือนก่อน +1

    Only one evident datum but how nice is this task! I'm enjoyed! Thank you so much , Professor 💯👍

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Glad to hear that!
      You are very welcome, my dear friend!
      Thanks for the feedback ❤️

  • @soli9mana-soli4953
    @soli9mana-soli4953 6 หลายเดือนก่อน +1

    two alternative methods
    first one: similarity
    tracing perpendicular to chord AE we have right triangle OAH (H is the midpoint of AE) similar to AEB, then
    9 : AB = R : 18
    area = AB*R = 9*18 = 162
    second one: logical
    extending AE untill it lies on diameter AF we have that area = radius*diameter=18*9=162

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @zdrastvutye
    @zdrastvutye 6 หลายเดือนก่อน +1

    the result of the area does not depend on the radius, see line 30:
    10 l1=18:l4=13:if l40 then 70
    80 xs=(xs1+xs2)/2:gosub 40:if dg1*dg>0 then xs1=xs else xs2=xs
    90 if abs(dg)>1E-10 then 80
    100 print xs;"%";"die gesuchte flaeche=";xs*r:masx=1200/2/r:masy=850/r
    110 if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @michaelkouzmin281
    @michaelkouzmin281 6 หลายเดือนก่อน +1

    3rd method:
    1) Let r=AO, x=OB, h=OE; y=EF;
    2) triangle ABE: 18^2=h^2+(r+x)^2 => h^2 = 18^2-(r+x)^2; (1)
    triangle OBE : r^2=h^2+x^2; => h^2 = r^2-x^2; (2)
    3) compare (1) and (2) => r^2-x^2 = 18^2-(r+x)^2;
    r^2-x^2 = 324 - (r^2+2rx+x^2);
    r^2-x^2 = 324 - r^2-2rx-x^2;
    2r^2+2rx=324;
    2*(r^2+rx)=324;
    r^2+rx=162
    4) Let us observe that Ablue = r^2+rx= 162sq units.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @yatesfletcher1424
    @yatesfletcher1424 6 หลายเดือนก่อน +1

    Let R be the radius OA and (x,y) be the coordinates of B. So B is the intersection of the semi-circle with the circle of radius 18 centered at A. Thus (x,y) must satisfy
    1) ( x+R)^2 + y^2 = 18^2 and
    2) x^2 + y^2 = R^2
    Subtracting 2) from 1) eliminates the x^2 and y^2 terms and simplifies to
    (X+R)R = 18^2/2 = 162.
    But (x+R)R is the blue area!

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @pralhadraochavan5179
    @pralhadraochavan5179 6 หลายเดือนก่อน +1

    Good morning sir

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Hello dear 🌹
      Good morning❤️

  • @alster724
    @alster724 6 หลายเดือนก่อน

    Trigonometry made it easier

  • @MarieAnne.
    @MarieAnne. 5 หลายเดือนก่อน

    Third method:
    Let r = radius of semi-circle. Then OA = OE = OF = r. Also AD = BC = r
    Let AB = x, BE = y. Then OB = AB − OA = x − r
    In right △ABE, we use Pythagorean Theorem:
    AB² + BE² = AE²
    x² + y² = 18² = 324
    In right △OBE, we use Pythagorean Theorem:
    OB² + BE² = OE2
    (x−r)² + y² = r²
    (x²−2rx+r²) + y² = r²
    x² − 2rx + y² = 0
    2rx = x² + y² = 324
    x = 162/r
    Area of square = AB * AD = x * r = (162/r) * r = 162

  • @spafon7799
    @spafon7799 6 หลายเดือนก่อน +2

    Took me a while but I found the solution by the second method eventually. I was curious to see what the other method was but it seems to me they are basically both the same method, the trig in the first solution is just sort of a bookkeeping detail, it really is just using similar triangles.
    I thought there might be some way to solve it only using pythagorean but I couldn't find such a solution and I suspect there isn't such a solution because professor would have probably found that and included it as one of the methods if such a method were possible.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for the feedback ❤️

    • @michaelkouzmin281
      @michaelkouzmin281 6 หลายเดือนก่อน

      You are too suspicious ))))
      Apply our beloved Pythagorean theorem to triangles ABE and OBE.
      Observe that BE^2 is the same in both.
      Apply some algebra and get doubled product of r and r+OB.
      Divide it by 2 and that is it.

  • @juanalfaro7522
    @juanalfaro7522 6 หลายเดือนก่อน +1

    I solved it by the 2nd method.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for the feedback ❤️

  • @KipIngram
    @KipIngram 3 หลายเดือนก่อน

    The horizontal location of B is not specified. This implies that the solution is INDEPENDENT of that parameter. Therefore, we can choose it to make solving the problem easier. I choose to put it at O. This makes the area of the square R^2, where R is the radius of the semicircle. This also implies that sqrt(2)*R = 18. Square this, and we get 2*R^2 = 18^2 = 324. Therefore, the area R^2 is 162. Q.E.D.

  • @povijarrro
    @povijarrro 6 หลายเดือนก่อน

    |OB|=x,|BE|=y
    (r+x)^2+y^2=18^2
    x^2+y^2=r^2
    2r(r+x)=18^2
    A=r(r+x)=9*18=162

  • @santiagoarosam430
    @santiagoarosam430 6 หลายเดือนก่อน

    Llamaremos G a la proyección ortogonal de O sobreDC. Respetando las condiciones del trazado de la figura propuesta, desplazando E hasta G, el rectángulo original se transforma en un cuadrado de dimensiones r*r y diagonal de longitud 18 ud cuya superficie es igual a la buscada- ---> Área ABCD =18²/2=162 ud².
    Gracias y saludos.

  • @stevetitcombe939
    @stevetitcombe939 6 หลายเดือนก่อน +1

    Area=AB . Radius
    Radius=AF/2,
    Therefore;
    Area= AB . AF/2,
    Now, AF= AB + BF
    So Area= AB . (AB + BF)/2
    Therefore;
    Area= (AB^2)/2 + (BF . AB)/2
    Therefore;
    Twice Area= AB^2 + (BF . AB)
    By intersecting chord theory;
    EB^2 = AB . BF
    So Twice Area= AB^2 + EB^2
    By Pythag,
    AE^2= EB^2 + AB^2
    So AB^2= AE^2 - EB^2
    By substitution;
    Twice Area=AE^2 - EB^2 + EB^2
    Simplifies to;
    Twice Area= AE^2
    So, Area= (AE^2)/2 = 18^2 / 2
    Area= 324 / 2 = 162 units^2

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 6 หลายเดือนก่อน +2

    Second method is mo bettah!...cuz i take great care to avoid enclosed spaces. Can't think inside a box. 🙂

    • @PreMath
      @PreMath  6 หลายเดือนก่อน +1

      😀wow
      Thanks for the feedback ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 6 หลายเดือนก่อน

    Let's use an orthonormal, center O, first axis(OB).
    Be OB = c, and R the radius of the circle.
    The equation of the circle is x^2 + y^2 = R^2
    At point E we have x = c and c^2 + y^2 = R^2,
    so E(c, sqrt(R^2 - c^2)
    Then VectorAE(c + R, sqrt(R^2 - c^2)
    AE^2 = (c + R)^2 + (R^2 - c^2) = 2.R^2 + 2.c.R = 18^2
    Meaning that: R.[R + c] = (18^2)/2 = 162
    Or that the blue area is 162.

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 6 หลายเดือนก่อน +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    According to the theorem of Thales the triangle AEF is a right triangle. Therefore we can apply the right triangle altitude theorem:
    BE² = AB*BF
    The triangle ABE is also a right triangle, so we can apply the Pythagorean theorem. With R being the radius of the semicircle we obtain:
    AE² = AB² + BE² = AB² + AB*BF = AB² + AB*(2*R − AB) = AB² + 2*AB*R − AB² = 2*AB*R
    Since AD=R, we can now calculate the area of the blue rectangle:
    A(ABCD) = AB*AD = AB*R = (1/2)*2*AB*R = (1/2)*AE² = (1/2)*18² = (1/2)*324 = 162
    Best regards from Germany

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!👍
      Thanks for sharing ❤️

  • @Waldlaeufer70
    @Waldlaeufer70 6 หลายเดือนก่อน +1

    A = 162 square units?

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

    • @Waldlaeufer70
      @Waldlaeufer70 6 หลายเดือนก่อน

      My thoughts:
      1) Move C to the top of the circle, so that C = E => AC = 18/2 * √2 = 9√2
      2) A(blue) = (9√2)² = 81 * 2 = 162 square units

  • @nenetstree914
    @nenetstree914 6 หลายเดือนก่อน +1

    162

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @user-jm7cx5zc9s
    @user-jm7cx5zc9s 6 หลายเดือนก่อน

    In trick, we can take rectangle as square and the answer is 162

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Thanks for the feedback ❤️

    • @spafon7799
      @spafon7799 6 หลายเดือนก่อน +1

      However, you have to solve the problem generally to prove it works for all cases.

    • @user-jm7cx5zc9s
      @user-jm7cx5zc9s 6 หลายเดือนก่อน

      ​@@spafon7799You are absolutely right.
      My original solution is
      18cosA × 18sinA /sin2A=162

  • @batavuskoga
    @batavuskoga 6 หลายเดือนก่อน +1

    I have another method, not necessarily better, but I found the solution.
    That's the most important 😆
    Let x=BF en y=BE
    18²=y²+(2r-x)² --> 324=y²+4r²-4rx+x² --> 324=x²+y²+4r²-4rx
    Draw a line from o to E, that's the radius r
    r²=OB²+y² --> r²=(r-x)²+y² --> r²=r²-2rx+x²+y² --> 2rx=x²+y²
    324=x²+y²+4r²-4rx
    324=2rx+4r²-4rx
    324=4r²-2rx
    162=2r²-rx (divide by 2)
    area rectangle=(2r-x)*r=2r²-rx
    so, area rectangle=162 square units

    • @PreMath
      @PreMath  6 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️