A Nice Algebra Problem | Math Olympiad | How to solve?

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ธ.ค. 2024

ความคิดเห็น • 7

  • @1234larry1
    @1234larry1 4 วันที่ผ่านมา +2

    Since that factoring was beyond me, I split the equation into two quadratics: (x^2+ax+5) and (x^2-bx-1)
    The object after this is to multiply the two “dummy” quadratics, combine the coefficients of x^3, combine the coefficients of x^2, and combine the coefficients of x to get a system of equations using a and b. Then match the coefficients of x^3, x^2, and x with the corresponding coefficients in the original equation. Here you have a system of equations you can use to solve for a and b. When you find a and b, substitute the values for a and b for the middle terms in the “dummy” quadratics, then solve each quadratic.

    • @SALogics
      @SALogics  4 วันที่ผ่านมา +1

      Very nice! ❤

    • @musicsubicandcebu1774
      @musicsubicandcebu1774 2 วันที่ผ่านมา

      Easier said than done!

    • @1234larry1
      @1234larry1 วันที่ผ่านมา +1

      @@musicsubicandcebu1774yes, you have to keep trying until you get the correct factors and signs on each side, for instance, when I started out I had (x^2-ax-5)(x^+bx+1) and the numbers didn’t work until I put (x^2+ax+5)(x^2-bx-1). Now this is tricky because it turned out that a=b, but since I already had -ax and +bx set up, when I found out both a and b=2 respectively, putting 2 into both factors changed the sign automatically into 2 and -2.

  • @raghvendrasingh1289
    @raghvendrasingh1289 4 วันที่ผ่านมา +3

    👍
    x^4 - 12 x - 5 = 0
    x^4+4 - 12 x - 9 = 0
    (x^2+2)^2 - (4 x^2+12 x+9) = 0
    (x^2+2)^2 - (2x+3)^2 = 0
    (x^2+2x+5) (x^2 - 2x - 1) = 0
    case 1
    x^2+2x = - 5
    (x+1)^2 = - 4
    x = - 1+2 i , - 1 - 2 i
    case 2
    x^2 - 2x = 1
    (x - 1)^2 = 2
    x = 1+√2 , 1 - √2

    • @arghyapathak2497
      @arghyapathak2497 4 วันที่ผ่านมา +2

      Far better than upper example ,very good 👍.

    • @SALogics
      @SALogics  4 วันที่ผ่านมา +2

      Very nice! ❤