A Simple Sum of the Series Containing Factorials

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 20

  • @Hidimbavideo
    @Hidimbavideo 23 วันที่ผ่านมา +1

    Very nice video.
    This person make it so easy I don't believe this to simple thanks sir🎉🎉🎉❤.

  • @centella8
    @centella8 5 หลายเดือนก่อน +1

    I didn't see a single video that explains this in Spanish. I appreciate it very much, greetings.

    • @CornerstonesOfMath
      @CornerstonesOfMath  5 หลายเดือนก่อน

      As a non-native English speaker, I understand your struggle. Thank you for your kind comment.

    • @centella8
      @centella8 4 หลายเดือนก่อน +1

      ​@@CornerstonesOfMath Bro, thanks to you I got the best mark. (10/10)

    • @CornerstonesOfMath
      @CornerstonesOfMath  4 หลายเดือนก่อน

      @@centella8 That's great!💯 Glad that I could be of help.

  • @lakshay3745
    @lakshay3745 9 หลายเดือนก่อน +1

    You could also just notice that the expansion of e^x is summation(n=0 to infinity) (x^n/n!) , just multiply both sides with x which leads to an (n+1) in the power, and taking an integral from 0 to 1 on both sides yeilds us the n+2 term in the denominator giving us the answer 1 for the required summation but notice that we need to minus the n=0 term aswell from both sides which will yield us the required answer (1/2)

    • @CornerstonesOfMath
      @CornerstonesOfMath  9 หลายเดือนก่อน

      You're right! Always glad to see different methods for one problem:)

  • @devilcreedgamer2291
    @devilcreedgamer2291 11 หลายเดือนก่อน +2

    Hlo sir can u help me with
    Σ n=1 to ∞, 1/ n(n+1).(n+1)!

    • @CornerstonesOfMath
      @CornerstonesOfMath  11 หลายเดือนก่อน +2

      It seems like no one (including internet) has succeeded to calculate its sum algebraically. Is it from the published book or the problem set?

    • @devilcreedgamer2291
      @devilcreedgamer2291 10 หลายเดือนก่อน +2

      @@CornerstonesOfMath it is from coaching material

    • @devilcreedgamer2291
      @devilcreedgamer2291 10 หลายเดือนก่อน

      @@CornerstonesOfMath sir if I can get your contact i can send you the question any contact instagram or telegram or WhatsApp

    • @CornerstonesOfMath
      @CornerstonesOfMath  10 หลายเดือนก่อน +1

      @@devilcreedgamer2291 Coaching material... that's interesting. If you email me the photocopy or captured image of that material, I will take a closer look to see if I can solve it. (cornerstonesofmath@gmail.com)

    • @samueldeandrade8535
      @samueldeandrade8535 10 หลายเดือนก่อน +2

      Hi, if I understood it right, I guess you can do it like that:
      first, notice that
      1/n(n+1)(n+1)!
      = (1/n - 1/(n+1))1/(n+1)!
      so the sum becomes
      (1/1 - 1/2) 1/2!
      + (1/2 - 1/3) 1/3!
      + (1/3 - 1/4) 1/4!
      + (1/4 - 1/5) 1/5!
      + ...
      Rearranging,
      1/2!
      - (1/2! - 1/3!) 1/2
      - (1/3! - 1/4!) 1/3
      - (1/4! - 1/5!) 1/4
      - ...
      meaning the sum is equal to
      1/2! - Sum (1/n! - 1/(n+1)!) 1/n
      with n = 2 to ∞. But we can simplify the term
      (1/n! - 1/(n+1)!) 1/n
      = n/(n+1)! 1/n
      = 1/(n+1)!
      Now, it is done:
      1/2 - Sum 1/(n+1)!
      = 1/2 - (e - 1/0! - 1/1! - 1/2!)
      = 1/2 - (e - 1 - 1 - 1/2)
      = 3 - e
      You just have to write it properly.