Integral of x*cos(ln(x)) (by parts + by parts)

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ธ.ค. 2024

ความคิดเห็น •

  • @IntegralsForYou
    @IntegralsForYou  4 ปีที่แล้ว +1

    👋 Follow @integralsforyou for a daily integral 😉
    📸 instagram.com/integralsforyou/
    𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐦𝐞𝐭𝐡𝐨𝐝𝐬 𝐩𝐥𝐚𝐲𝐥𝐢𝐬𝐭
    ► Integration by parts
    th-cam.com/play/PLpfQkODxXi4-GdH-W7YvTuKmK_mFNxW_h.html
    ► Integration by substitution
    th-cam.com/play/PLpfQkODxXi4-7Nc5OlXc0zs81dgwnQQc4.html
    ► Integration by trig substitution
    th-cam.com/play/PLpfQkODxXi49OUGvTetsTW61kUs6wHnzT.html
    ► Integration by Weierstrass substitution
    th-cam.com/play/PLpfQkODxXi4-8kbKt63rs1xwo6e3yAage.html
    ► Integration by partial fraction decomposition
    th-cam.com/play/PLpfQkODxXi4-9Ts0IMGxzI5ssWNBT9aXJ.html
    𝐅𝐨𝐥𝐥𝐨𝐰 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮
    ▶️ TH-cam
    th-cam.com/users/integralsforyou
    📸 Instagram
    instagram.com/integralsforyou/
    👍 Facebook
    facebook.com/IntegralsForYou
    𝐃𝐨𝐧𝐚𝐭𝐞
    🙋‍♂️ Patreon
    www.patreon.com/integralsforyou

  • @jorgearmandoalvarezperalta8741
    @jorgearmandoalvarezperalta8741 3 ปีที่แล้ว +2

    Al final... ¿No faltó una X² a lado del sen (In (x))?

    • @IntegralsForYou
      @IntegralsForYou  3 ปีที่แล้ว +1

      Totalmente cierto! Gracias por avisar y espero que no te haya causado mucha molestia...

  • @angeldesireeripalda9934
    @angeldesireeripalda9934 ปีที่แล้ว +1

    thaaaanksie

  • @alexfan5752
    @alexfan5752 5 ปีที่แล้ว

    Profesor y tambien podria haber hecho una sustitucion de u=ln(x) ,e^u=x,dx=e^udu??? y despues aplicar por partes??

    • @IntegralsForYou
      @IntegralsForYou  5 ปีที่แล้ว

      Hola Alex! Sí, también puedes hacerlo así! Te muestro como sería el principio, pero si tienes problemas puedo escribirte el final si quieres:
      Integral de x*cos(ln(x)) dx =
      Sustitución:
      t = ln(x) ==> e^t = x
      dt = 1/x dx ==> x dt = dx ==> e^t dt = dx
      = Integral de (e^t)cos(t) (e^t)dt =
      = Integral de (e^2t)cos(t) dt =
      = ...

    • @alexfan5752
      @alexfan5752 5 ปีที่แล้ว

      @@IntegralsForYou Gracias profe!!! :-D

    • @IntegralsForYou
      @IntegralsForYou  5 ปีที่แล้ว

      De nada! Un saludo! ;-D

  • @pablobiedma
    @pablobiedma 6 ปีที่แล้ว

    What if u---- x dv--- cos(ln(x))dx???

    • @IntegralsForYou
      @IntegralsForYou  6 ปีที่แล้ว +1

      Hi Pablo, it becomes very long because the integral of x*cos(ln(x)) becomes the integral of x*sin(ln(x)) and it is like we are "running in circles"..
      Integral of x*cos(ln(x)) dx =
      Parts: Integral of u dv = uv - Integral v du
      u = x ==> du = dx
      dv = cos(ln(x)) dx ==> v = th-cam.com/video/kHTpZFncmU8/w-d-xo.html = (x/2)[cos(ln(x)) + sin(ln(x))]
      = x*(x/2)[cos(ln(x)) + sin(ln(x))] - Integral of (x/2)[cos(ln(x)) + sin(ln(x))] dx =
      = (x^2/2)[cos(ln(x)) + sin(ln(x))] - (1/2)Integral of x*cos(ln(x)) - (1/2)Integral of x*sin(ln(x)) dx
      ==>
      Integral of x*cos(ln(x)) dx =
      = (x^2/2)[cos(ln(x)) + sin(ln(x))] - (1/2)Integral of x*cos(ln(x)) - (1/2)Integral of x*sin(ln(x)) dx
      ==>
      Integral of x*cos(ln(x)) dx + (1/2)Integral of x*cos(ln(x)) =
      = (x^2/2)[cos(ln(x)) + sin(ln(x))] - (1/2)Integral of x*sin(ln(x)) dx
      ==>
      (3/2)Integral of x*cos(ln(x)) =
      = (x^2/2)[cos(ln(x)) + sin(ln(x))] - (1/2)Integral of x*sin(ln(x)) dx

    • @fernandoamador2988
      @fernandoamador2988 6 ปีที่แล้ว

      at the end because I am multiplying 5/4 if 5/4 is multiplying the integral, should I not divide?