Integral of cos^5(x)/sqrt(sin(x)) (substitution)

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 พ.ย. 2024

ความคิดเห็น •

  • @IntegralsForYou
    @IntegralsForYou  3 ปีที่แล้ว

    👋 Follow @integralsforyou for a daily integral 😉
    📸 instagram.com/integralsforyou/
    𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐦𝐞𝐭𝐡𝐨𝐝𝐬 𝐩𝐥𝐚𝐲𝐥𝐢𝐬𝐭
    ► Integration by parts
    th-cam.com/play/PLpfQkODxXi4-GdH-W7YvTuKmK_mFNxW_h.html
    ► Integration by substitution
    th-cam.com/play/PLpfQkODxXi4-7Nc5OlXc0zs81dgwnQQc4.html
    ► Integration by trig substitution
    th-cam.com/play/PLpfQkODxXi49OUGvTetsTW61kUs6wHnzT.html
    ► Integration by Weierstrass substitution
    th-cam.com/play/PLpfQkODxXi4-8kbKt63rs1xwo6e3yAage.html
    ► Integration by partial fraction decomposition
    th-cam.com/play/PLpfQkODxXi4-9Ts0IMGxzI5ssWNBT9aXJ.html
    𝐅𝐨𝐥𝐥𝐨𝐰 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮
    ▶️ TH-cam
    th-cam.com/users/integralsforyou
    📸 Instagram
    instagram.com/integralsforyou/
    👍 Facebook
    facebook.com/IntegralsForYou
    𝐃𝐨𝐧𝐚𝐭𝐞
    🙋‍♂️ Patreon
    www.patreon.com/integralsforyou

  • @kenedyq.f9917
    @kenedyq.f9917 7 ปีที่แล้ว +1

    eres lo maximo

  • @reemrahmaoui6158
    @reemrahmaoui6158 9 หลายเดือนก่อน +1

    Hi! but isnt derivative of cosx = -sinx? instead of sinx being the u?

    • @IntegralsForYou
      @IntegralsForYou  9 หลายเดือนก่อน +1

      Hi! We do u=sin(x) because we have all the expression in terms of sin(x) except for one cos(x) which is next to the "dx". Since du=cos(x)dx we can substitute cos(x)dx by "du".
      If we want to do u=cos(x) then du=-sin(x)dx which is -du=sin(x)dx. However, we need all the expression in terms of cos(x) and going this way may be more complicated than the first one:
      Integral of cos^5(x)/sqrt(sin(x)) dx =
      = Integral of cos^5(x)/sqrt(sin(x)) sin(x)/sin(x) dx =
      = Integral of cos^5(x)/sin(x)*sqrt(sin(x)) sin(x)dx =
      = Integral of cos^5(x)/sqrt(sin^3(x)) sin(x)dx =
      Substitution:
      u = cos(x) ==> u^2 = cos^2(x) ==> 1-u^2 = 1-cos^2(x) ==> 1-u^2 = sin^2(x) ==> sqrt(1-u^2) = sin(x) ==> (1-u^2)^(1/2) = sin(x) ==> [(1-u^2)^(1/2)]^3 = sin^3(x) ==> (1-u^2)^(3/2) = sin^3(x)
      du = -sin(x)dx ==> -du = sin(x)dx
      = Integral of u^5/sqrt((1-u^2)^(3/2)) (-du) =
      = - Integral of u^5/(1-u^2)^(3/4) du =
      = - Integral of u^4/(1-u^2)^(3/4) u*du =
      = - Integral of (u^2)^2/(1-u^2)^(3/4) u*du =
      Substitution:
      t = 1-u^2 ==> u^2 = 1-t
      dt = -2u*du ==> (-1/2)dt = u*du
      = - Integral of (1-t)^2/t^(3/4) (-1/2)dt =
      = (1/2)*Integral of (1-2t+t^2)/t^(3/4) dt =
      = (1/2)*Integral of [1/t^(3/4) - 2t/t^(3/4) + t^2/t^(3/4)] dt =
      = (1/2)*Integral of t^(-3/4) dt - Integral of t^(1/4) dt + (1/2)*Integral of t^(5/4) dt =
      = (1/2)*t^(1/4)/(1/4) - t^(5/4)/(5/4) + (1/2)*t^(9/4)/(9/4) =
      = (1/2)(4/1)*t^(1/4) - (4/5)*t^(5/4) + (1/2)(4/9)*t^(9/4) =
      = 2*t^(1/4) - (4/5)*t^(5/4) + (2/9)*t^(9/4) =
      =[t^(1/4)]*[ 2 - (4/5)*t + (2/9)*t^2 ] =
      =[(1-u^2)^(1/4)]*[ 2 - (4/5)*(1-u^2) + (2/9)*(1-u^2)^2 ] =
      =[(1-cos^2(x))^(1/4)]*[ 2 - (4/5)*(1-cos^2(x)) + (2/9)*(1-cos^2(x))^2 ] =
      =[(sin^2(x))^(1/4)]*[ (2 - (4/5)*sin^2(x) + (2/9)*(sin^2(x))^2 ] =
      =[(sin(x))^(1/2)]*[ 2 - (4/5)*sin^2(x) + (2/9)*sin^4(x) ] =
      =sqrt(sin(x))*[ 2 - (4/5)*sin^2(x) + (2/9)*sin^4(x) ] + C

  • @shreyanshuyadav4505
    @shreyanshuyadav4505 4 ปีที่แล้ว +1

    Thank u so much💯👍

  • @fatiherim5859
    @fatiherim5859 8 ปีที่แล้ว +2

    i follow you in turkey. Im waiting others integrals examples. thanks

    • @IntegralsForYou
      @IntegralsForYou  8 ปีที่แล้ว +2

      Hi furkan Erim! Next week I will upload new videos! Thanks for asking, and let me know if there is an example that you want me to do! :D

    • @fatiherim5859
      @fatiherim5859 8 ปีที่แล้ว

      Integrals ForYou help me for integral cot^3x

    • @IntegralsForYou
      @IntegralsForYou  8 ปีที่แล้ว +1

      Hey! Take a look at this video! th-cam.com/video/1t0Xt8DGJV0/w-d-xo.html
      In your case:
      cot^3(x) = cos^3(x)/sin^3(x) = ((1-sin^2(x))/sin^3(x)) cos(x)
      And you do substitution: u = sin(x), du = cos(x)dx
      Integral of ((1-sin^2(x))/sin^3(x)) cos(x) dx = Integral of ((1-u^2)/u^3) du =....

    • @IntegralsForYou
      @IntegralsForYou  8 ปีที่แล้ว

      Integral of cot^3(x): th-cam.com/video/CfYJKNTmoiQ/w-d-xo.html

    • @bestnocture
      @bestnocture 8 ปีที่แล้ว

      So satisfying to watch you integrate!

  • @bravek9881
    @bravek9881 7 ปีที่แล้ว +2

    Thank you so much but i cant understans where did we get the 4/5 at 5:08..help please

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว +1

      Hi Brave K!
      -2 u^(5/2)/(5/2) =
      -2/(5/2) u^(5/2) =
      = -2 (2/5)u^(5/2) =
      = -(2*2/5)u^(5/2) =
      = -(4/5)u^(5/2)

    • @bravek9881
      @bravek9881 7 ปีที่แล้ว

      THANK YOU SO MUCH now it is all clear!♦

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว

      You're welcome! :-D

  • @dipakray339
    @dipakray339 6 ปีที่แล้ว

    Thank you boss😃😃😃

  • @juniorschmitt
    @juniorschmitt 8 หลายเดือนก่อน

    if cos^2, who is the better substituition?

    • @IntegralsForYou
      @IntegralsForYou  8 หลายเดือนก่อน +1

      Hi! The integral of cos^2(x)/sqrt(sin(x)) is a non-elementary integral, it cannot be expressed in terms of finite standard functions...

    • @juniorschmitt
      @juniorschmitt 8 หลายเดือนก่อน

      Thank you very much for responding, now I am aware. My teacher had made a typing error in the list of exercises.

    • @IntegralsForYou
      @IntegralsForYou  8 หลายเดือนก่อน +1

      @@juniorschmitt Well, I think it is non-elementary... if I am wrong please let me know hehe

  • @СнежныйБарс-х8ь
    @СнежныйБарс-х8ь ปีที่แล้ว +1

    288

  • @tiuk23
    @tiuk23 7 ปีที่แล้ว

    sin(x)=u^2, cos(x)*dx=2u*du is better substitution in my opinion.

  • @cedrickvillanueva8272
    @cedrickvillanueva8272 3 ปีที่แล้ว

    I didn't understand at 5:53 untill 5:55

    • @IntegralsForYou
      @IntegralsForYou  3 ปีที่แล้ว

      I simplified the square root:
      sqrt(u^4) = u^(4/2) = u^2

  • @nidhisingh5925
    @nidhisingh5925 6 ปีที่แล้ว

    Bhai hath hatiye ga,tab na kuch dikhega