Sweden Math Olympiad Problem | A Very Nice Geometry Challenge | Find the angle θ

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ม.ค. 2025

ความคิดเห็น • 43

  • @권기명-y8s
    @권기명-y8s 2 หลายเดือนก่อน +2

    Place point Q on half-line CB so that triangle QAC becomes a 30-75-75 isosceles triangle.
    Angle AQC = 30 degrees, line segment AQ = 2x = line segment QC
    At this time, the location of point Q is to the left or right of point B, or coincides with point B.
    1) Q-B-C: line segment AQ = 2x = line segment QC > line segment BC (=2x), error
    2) B-Q-C: line segment AQ = 2x = line segment QC < line segment BC (=2x), error
    3) Therefore, point Q is located at point B and θ=30 degrees.

  • @ManojkantSamal
    @ManojkantSamal หลายเดือนก่อน

    Tita =30 degree
    #=read as angle
    *=read as square root
    ^=read as to the power
    In the APC triangle, #ACP=75
    tan 75=AP/PC
    (2+*3)=x/PC
    PC=X/(2+*3)=X(2-*3)/(4-3)
    PC=X(2-*3)=2X-*3X
    BP=BC-PC=2X-(2-*3X)
    =2X-2X+*3X=*3X
    Because in the ABP triangle
    #BPA=90
    AB=*(AP^2+BP^2)
    AB=*{X^2+(*3X)^2}
    =*(X^2+3X^2)=*(4X^2)
    =2X
    SO,
    AB=2x, AP=x
    Sinb=AP/AB
    =X/2X=1/2
    Sinb= sin 30degree
    b= 30 degree
    Thita = 30 degree

  • @RAG981
    @RAG981 2 หลายเดือนก่อน +1

    PC = xtan15= (2-rt3)x => BP = 2x-PC = rt3x => AB^2 = x^2 + 3x^2= 4x^2 => AB = 2x => ABC isoceles => angle BAC =75, => angle theta = 30 degrees.
    It is useful to be able to show tan 15 = 1/(2+rt3) = 2-rt3 without too much fuss.

  • @lasalleman6792
    @lasalleman6792 2 หลายเดือนก่อน +1

    Just make X = 1 and BC = 2. Going Pythagorean, liine AC =- .9659. Line PC becomes .249. That makes Line BP 1.75 (rounded). Tangent of angle at B = 1, and cosine = 1.75 Tan/Cos = .5714. Use arctan function on calculator , comes out to 30 degrees.

  • @jimlocke9320
    @jimlocke9320 2 หลายเดือนก่อน

    The 15°-75°-90° right triangle appear frequently enough in problems that it is a good idea to have its ratio of sides handy. ΔAPC is a 15°-75°-90° right triangle. The ratio of sides short:long:hypotenuse is (√3 - 1):(√3 + 1):2√2. Side PC is the short side and AP is the long side. So, PC is ((√3 - 1)/(√3 + 1)) times as long as AP, or has length ((√3 - 1)/(√3 + 1))x. We multiply the fraction by ((√3 - 1)/(√3 - 1)) and simplify to find PC has length (2 - √3)x or 2x - x√3. BP has length BC - PC = 2x - (2x - x√3) = x√3 So BP is √3 times as long as AP. The ratio of sides 30°-60°-90° right triangle, short:long:hypotenuse, is 1:√3:2. Here, we find that long side BP of ΔABP is √3 times as long as short side AP. This is the ratio for a 30°-60°-90° right triangle. So, AP is the short side, opposite the 30° angle and Θ = 30°, as Math Booster also found.

  • @ducduypham7264
    @ducduypham7264 2 หลายเดือนก่อน

    Extend CB. On CB call D such that B is midpoint of CD.We now have CD=4x.Triangle ACD with angle C equal 75° and base CD=4*height AP so ACD is right triangle with angle C=75° and angle ADC=15° and DC is hypotenuse with midpoint B so BA=BD then theta=angle ABC= 2* angle ADB=2*15°=30°

  • @joseluishablutzelaceijas928
    @joseluishablutzelaceijas928 2 หลายเดือนก่อน

    One could, alternatively, draw a perpendicular to BC at the center, let's call this midpoint "U" and then choose a point "V" in the perpendicular to BC through U and above BC in such a way that [angle VCB] = 15° and thus the triangles VCU and CAP are congruent (which implies that |CA| = |CV|) and [angle VCA] = 60°. As U is the midpoint of BC, |VB| = |VC| and, due to |VC| = |CA| and [angle VCA] = 60°, the triangle VCA is equilateral, which means that |VB| = |VC| = |VA|. This means that V is the circumcircle of triangle ABC and, as [angle CVA] = 60° due to VCA being equilateral, one must have that [angle CBA] = 30°. The motivation for this construction was simply the relation between the lengths of the height and the base of 1 to 2, the problem was screaming for similarity/congruency involving the base.

  • @asvquickcalculations6712
    @asvquickcalculations6712 วันที่ผ่านมา

    CotzT=2-cot75
    Cot75=1-tan30/1+tan30=root3-1/root3+1=4-2root3/2=2-root3
    CotT=root3
    Theeta=30°

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 หลายเดือนก่อน +1

    A=2x*x/2=(x/sinθ)(x/sin75)sin(90-θ+15)/2...2sinθsin75=cos(θ-15)..ctgθ=(2sin75-sin15)/cos15=2-tg15...θ=30

  • @imetroangola17
    @imetroangola17 2 หลายเดือนก่อน

    *Outra solução:*
    Lei dos senos no ∆ABC:
    AB/sen 75° = BC/ sen A. Note que:
    sen θ= x/AB e A=180 - (75° + θ), assim:
    AB=x/sen θ e sen A = 75° + θ. Daí,
    x/sen θ sen 75° = 2x/ sen (75° +θ)
    1/sen θ sen 75° = 2/ sen (75° + θ)
    2sen θ sen 75° = sen (75° + θ)
    _Fórmula trigonométrica:_
    cos (A-B) - cos (A+B)=2sen A sen B
    2sen θ sen 75°= cos (75°-θ) - cos (75°+θ). Daí
    cos (75°-θ) - cos (75°+θ)= sen (75°+θ)
    Ora, sen (75°+θ)= cos (90° -(75+θ), assim:
    sen (75°+θ)= cos (15°- θ). Assim,
    cos (75°- θ) - cos (75°+θ)= cos (15°- θ)
    cos (75°+θ) + cos (15°- θ) = cos (75°- θ)
    _Usando a fórmula trigonométrica:_
    cos P + cos Q = 2cos(P+Q)/2 cos (P-Q)/2
    Assim,
    cos (75°+θ) + cos (15°- θ) = 2cos 45° cos (30°+θ)
    Daí,
    2cos 45° cos (30°+θ) = cos (75°- θ)
    cos (75°- θ)/cos (30°+θ)= cos 45°/cos 60°
    Logo 75°- θ = 45°→ *θ = 30°.*
    Nada fácil por trigonometria!

  • @СтасМ-ъ8б
    @СтасМ-ъ8б 2 หลายเดือนก่อน

    Идея: На продолжении отрезка BC берём точку L, такую , что AL=2x.
    Также на отрезке BC возьмем точку K, такую, что LK=2x. Угол ALP=30°. Углы LKA и LAK равны 75°. Треугольники ABC и ALK равны, по двум сторонам и углу между ними 75°. Тогда углы ALK и ABC равны, и равны 30°.

  • @imetroangola17
    @imetroangola17 2 หลายเดือนก่อน

    *Apontamento na solução:*
    Note que x=AP=a + a√3/2, isto é, x=a(2+√3)/2. Assim,
    BP=2x - a/2=2a(2+√3)/2 - a/2= a(3+2√3)/2. Assim,
    tag θ =AP/BP. Daí,
    tag θ =a(2+√3)/2 ÷a(3+2√3)/2
    tag θ =(2+√3) ÷ (3+2√3)
    tag θ =√3(2+√3)/√3 ÷ (3+2√3)
    tag θ =(2√3+3)/√3 ÷ (3+2√3)
    tag θ = 1/√3 =√3/3, logo
    *θ = 30°.*
    Abraços!

  • @ludmilaivanova1603
    @ludmilaivanova1603 2 หลายเดือนก่อน

    Area of ABC=2xtimesx/2=x^2. Area of ABC= 2x (AC) sin 75degrees=2x(AC) cos15degrees=2x (AC))PC)/(AC). So, 2(PC)=x.
    Tan Theta=x/ (2x-x/2)=2/3=0.58. Thete=30degrees.

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 2 หลายเดือนก่อน +4

    According to the rule of sines, we have AC/sin θ=2x/sin (θ+75) and AC=x/sin (75), and from this 2sin(θ)*sin (75)=sin (θ+75), so θ=30.

    • @ritwikgupta3655
      @ritwikgupta3655 2 หลายเดือนก่อน

      How? 2sin theta*sin75=sin(theta+75) is an identity. Does not solve for theta.

    • @ritwikgupta3655
      @ritwikgupta3655 2 หลายเดือนก่อน

      How? 2sin theta*sin75=sin(theta+75) is an identity. Does not solve for theta.

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 2 หลายเดือนก่อน

      ​If I just try to simplify using the rules of sine and cosine we find that tan(θ)=2sin(75)/(√6+√2-2cos(75)) and since sin75=sin(30+45)=sin30*cos45+sin45*cos30=(√6+√2)/4 and likewise cos75=(√6-√2)/4 and by substitution we find tan(θ)=1/√3 so θ=30​@@ritwikgupta3655

  • @johnbrennan3372
    @johnbrennan3372 2 หลายเดือนก่อน +1

    Tan 75degrees= 1/(2-root3). Tan75degrees = x/ |PC|=1/(2-root3) so |PC|= ( 2-root3)x. Therefore |BP|= 2x - [(2-root 3)x]= 2x - 2x + (root3)x=(root 3)x.Therefore tan theta= x/ (root3)x=1/ root3.So theta= 30 degrees.

    • @dickroadnight
      @dickroadnight หลายเดือนก่อน

      Yes… simple, isn’t it?

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 หลายเดือนก่อน

    {45°A+45°B+90°C}=180°ABC {2x+2x ➖ }=4x^2" 180°ABC/4x^2=40.20x^2 2^20.20x^2 2^10.2^10x^2 1^2^5.1^2^5x^1 1^1^2^1 2^1 (ABC ➖ 2ABC+1).

  • @hans7831
    @hans7831 2 หลายเดือนก่อน

    PC = y
    tan75° = x/y
    y = x/3,73....
    tanB = x / (2x-y )
    Bruch kürzen durch x:
    tanB = 1 / ( 2 -y/x)
    Einsetzen von y = x/3,73...
    tanB = 1 / ( 2 - 1/3,73...)
    tanB = 0,57735..
    angle B= 30°

  • @raghvendrasingh1289
    @raghvendrasingh1289 หลายเดือนก่อน +1

    Obviously
    x cot 75+x cot theta= 2x
    2-√3 + cot theta= 2
    cot theta = √3
    theta= 30°

  • @vcvartak7111
    @vcvartak7111 2 หลายเดือนก่อน +1

    This construction is not simple to realise there has to be trigonometric solution.

    • @MathBooster
      @MathBooster  2 หลายเดือนก่อน +2

      Making an isosceles triangle is the most common construction.

    • @unfunny_shreyas
      @unfunny_shreyas 2 หลายเดือนก่อน

      @@MathBooster yeah, coincidently I had used it in a question I did today only

  • @marioalb9726
    @marioalb9726 2 หลายเดือนก่อน +1

    Sine rule:
    (x/sinα)/sin75°= 2x/sin(α+75°)
    sin(α+75°) = 2 sinα sin75°
    sinα cos75°+cosα sin75°=2 sinα sin75°
    cos75° + sin75°/tanα = 2 sin75°
    sin75°/tanα = 2 sin75°- cos75°
    1/tanα = 2 - 1/tan75°
    tanα = 1 / (2-1/tan75°) = 1/√3
    α = 30° ( Solved √ )

  • @murdock5537
    @murdock5537 หลายเดือนก่อน

    φ = 30°; ∆ ABC → ABC = θ = ?; BCA = 5φ/2; CAP = φ/2; BPA = 3φ; BC = BP + CP = (2x - k) + k
    tan⁡(φ/2) = k/x = 2 - √3 → k = x(2 - √3) → 2x - k = x√3 → AB = 2x → θ = φ
    btw: sin⁡(φ) = 1/2 → cos⁡(φ) = √3/2 → sin⁡(φ/2) = √((1/2)(1 - cos⁡(φ))) = (√2/4)(√3 - 1) →
    cos⁡(φ/2) = (√2/4)(√3 + 1) → tan⁡(φ/2) = sin⁡(φ/2)/cos⁡(φ/2) = 2 - √3 🙂

  • @violetadeliu734
    @violetadeliu734 2 หลายเดือนก่อน

    Nqse trekendeshi ABC eshte kende drejte ( nuk di gjuhen tuaj . Shoh vetem figuren) atehere kendi i kerkuar A eshte 25 grade.

  • @__tai_
    @__tai_ 6 วันที่ผ่านมา

    i didnt wath the full video but how does it takes 10 minutes? also the comments seems really complicated. its literally takes 10 seconds to solve it. just extend side BC 2x more to the left and connect it with point A. according to the rule (in the 15-75-90 triangle, 4x base is added to x height) you will have a 15-75-90 triangle. then use the rule of three (2x-2x-2x) and you can see 30 degrees.

  • @comdo777
    @comdo777 2 หลายเดือนก่อน +1

    asnwer=30 isit

  • @marioalb9726
    @marioalb9726 2 หลายเดือนก่อน +9

    BP + PC = BC
    x/tanθ + x/tan75° = 2x
    1/tanθ + 1/tan75° = 2
    1/tanθ = 2 - 1/tan75° = √3
    tanθ = 1/√3 ---> θ=30° ( Solved √ )
    Too complicated video solution !!!

    • @ritwikgupta3655
      @ritwikgupta3655 2 หลายเดือนก่อน +4

      I did this way too. It is the simplest solution

    • @marioalb9726
      @marioalb9726 2 หลายเดือนก่อน +2

      @ritwikgupta3655
      Exacty !!! The simplest !!

    • @uferbenzo
      @uferbenzo หลายเดือนก่อน +1

      1/tan75= tan 15

    • @marioalb9726
      @marioalb9726 หลายเดือนก่อน +1

      @@uferbenzo
      BP + PC = BC
      x/tanθ + x/tan75° = 2x
      1/tanθ + 1/tan75° = 2
      tan(90°-θ) = 2 - tan15° = √3
      θ = 90°- atan(√3) = 30° ( Solved √ )
      Almost the same !!!, ®uferberzo

    • @__tai_
      @__tai_ 6 วันที่ผ่านมา +2

      what about extending side BC 2x more to the left and connect it with point A. according to the rule (in the 15-75-90 triangle, 4x base is added to x height) you will have a 15-75-90 triangle. then use the rule of three (2x-2x-2x) and you can see 30 degrees​. it took 10 secs
      @@marioalb9726

  • @websparrow
    @websparrow 2 หลายเดือนก่อน

    Digreets…

  • @yakupbuyankara5903
    @yakupbuyankara5903 2 หลายเดือนก่อน

    30degrees

  • @violetadeliu734
    @violetadeliu734 2 หลายเดือนก่อน

    Me falni kur pash me poshte kuptova se e kisha gabim. Ne trek AMC dybrinjenjeshem dalin kendet e bazes ......