Olympiad Math | Can you find area of the Green shaded square? |

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ม.ค. 2025

ความคิดเห็น • 78

  • @ap3xmath123
    @ap3xmath123 10 หลายเดือนก่อน +7

    Really nice question! Definitely the channel to go to increase you IQ level

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      Thanks ❤️

    • @Patrik6920
      @Patrik6920 10 หลายเดือนก่อน +3

      ..depends, in the initial definition of the problem it isent specified that the square is a 45 degree tilted square.... wich makes it very much harder..
      if its as simple as a 45 degre tilted square this is correct...
      if its not, we have to consider the square can be rotated in any angle, if we assume the squere can only rotate around its center, its fairly easy calculate if it also must fit inside the triangle, the are the aquare can occupy is therfor a circle, arnd the are is an circle with an inscribed square
      Are of square becomes ( 2√2(r) )²
      if r=12/7
      Area = ( 2√2(12/7) )²
      if however the square can rotaated so it take upp as much space as possible, it gets trickier (we get a max and min area) .. im not going to solve it, but just consider stating nessesary information .. that the squeare is tilted in a certain angle say 45 deg) ... as u can never assume it is

    • @marcelowanderleycorreia8876
      @marcelowanderleycorreia8876 10 หลายเดือนก่อน

      I agree with you@@Patrik6920

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 10 หลายเดือนก่อน +18

    Professor, I though the segment FE was not, necessarily perpendicular to the segment EC. It was not given in the problem. I did not undestand...

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      My apologies if I were not clear...

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 10 หลายเดือนก่อน +3

    Thanks sharing sir❤❤❤

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks ❤️

  • @ramanan36
    @ramanan36 10 หลายเดือนก่อน +3

    If I have to do this by construction, there are two degrees of freedom: the distance of E from B and the angle BED. But we have only one equation (area of the right triangle) with these two unknowns. Hence it must be stated that FE is parallel to AB, otherwise there are multiple solutions.

  • @ramanan36
    @ramanan36 10 หลายเดือนก่อน +2

    If we don't assume EF is parallel to AB, finding the smallest such square becomes a nice minimisation problem. The smallest such square has side 12/5 (slightly smaller than the 12*√2/7 you get when you add the missing parallel assumption), with BE = 36/25.

  • @garyanderson2580
    @garyanderson2580 10 หลายเดือนก่อน +3

    It needs to be stated initially that AB is perpendicular to EF, otherwise there is no solution and the squares’area is not defined by the given information.

    • @handel136
      @handel136 10 หลายเดือนก่อน

      Exactly

  • @BorisRaifler
    @BorisRaifler 10 หลายเดือนก่อน +9

    Why EF is perpendicular to BC?

    • @saiakashanjalisakaray2865
      @saiakashanjalisakaray2865 10 หลายเดือนก่อน

      Yeah! Y?

    • @ludosmets2018
      @ludosmets2018 10 หลายเดือนก่อน +1

      Yes, my question too. Square can be tilted while points E, D & F remain touching the sides

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      My apologies if I were not clear...

  • @laxmikantbondre338
    @laxmikantbondre338 10 หลายเดือนก่อน +6

    How FE is perpendicular to BC.
    Is it part of given facts?

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      My apologies if I were not clear...

    • @mumps59
      @mumps59 10 หลายเดือนก่อน +2

      ⁠@@PreMathokay now you’re just making me mad. Why just tell everyone you’re sorry you weren’t clear but then not answer the question or modify the video to make it a given that EF is perpendicular to BC?!?

    • @fouadyoussef3113
      @fouadyoussef3113 2 หลายเดือนก่อน +1

      @@mumps59 This was not his first incident of this nature.

  • @SteveDerrer
    @SteveDerrer 10 หลายเดือนก่อน +6

    Not this time, Professor. Since it is not a given that BE= BD, nor is that equality necessarily true based on what we are given, FE is not necessarily parallel to AB, triangle CEF is not necessarily a right triangle and therefore triangles CEF and ABC are not similar. Your proof thus falls apart.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      My apologies if I were not clear...

    • @theyellofellow7873
      @theyellofellow7873 10 หลายเดือนก่อน

      Ok so.....
      If P is the point of intersection of 2 diagonals then
      DP=PE (Diagonals of sq. Bisect each other )

  • @kevingough6976
    @kevingough6976 10 หลายเดือนก่อน +2

    EF is not stated as being parallel to AB.

  • @zogzog6611
    @zogzog6611 10 หลายเดือนก่อน +1

    I think the fact that FE is parallel to AB probably needs to be in the problem statement.

  • @murdock5537
    @murdock5537 10 หลายเดือนก่อน +1

    ∆ ABC → AB = 4 = BD + DR + AR = k + k + 4 - 2k; BC = BE + CE = k + (b - k) = b
    k = BE = BD = DR = EF/2 = DG/2; sin⁡(ABC) = 1
    2b = 24 → b = 12 → AC = 4√10 → tan⁡(ϑ) = 4/12 = 1/3 = (4 - 2k)/k → k = 12/7 → area ∎DEGF = (12√2/7)^2

    • @robertlynch7520
      @robertlynch7520 10 หลายเดือนก่อน +1

      +1 ... for using trigonometry, when not necessarily the easiest way! See my little write-up for a non-trigonometric way that uses intersecting line equations. It was fun. GoatGuy

  • @Train_tv_22
    @Train_tv_22 10 หลายเดือนก่อน +1

    Nice sharing

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks ❤️

  • @prossvay8744
    @prossvay8744 10 หลายเดือนก่อน +3

    Area of the green square=(12√2/7)^2=288/49=5.88square units .❤❤❤ Thanks sir.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      You are very welcome!
      Thanks ❤️

  • @mathbynisharsir5586
    @mathbynisharsir5586 10 หลายเดือนก่อน +3

    Very Very nice video sir 🎉🎉🎉🎉🎉

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      So nice of you
      Thanks ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 10 หลายเดือนก่อน

    This problem is very simple if we use an adapted orthonormal: B(0;0) A(0;4) C(12;0) (easy to calculate BC with the Pythagorean theorem just as you did)
    Now let's note BE = BD =a. Then we have E(a;0) D(0;a) F(a;2.a)
    We have VectorAC(12;-4) which is colinear to VectorU(3;-1). The equation of (AC) is then (x).(-1) - (y-4).(3) = 0 or -x - 3.y +12 = 0.
    Point F is on (AC) then -a -3.(2.a) +12 = 0 which gives that a =12/7, so the length of the square is sqrt(2). (12/7) and its area is 2.(144/49) = 288/49.

  • @MrPaulc222
    @MrPaulc222 3 หลายเดือนก่อน

    I went a slightly different.
    I called DB and EB, a, but it took me a short while to be sure that FE and AB are parallel.
    As the sides are a 3:1 ratio, 12-a = 2a (the diagonal).
    Rearrange: 12 - a = 3(2a)
    12 - a = 6a
    12 = 7a
    a = 12/7
    diagonal is 24/7
    Squares sides are 24/7)/sqrt(2) or (24/(7*sqrt(2))
    Square is for 576/98
    288/49
    Squares area is 288/49 approximates to 5.88 un^2

  • @michaelkouzmin281
    @michaelkouzmin281 10 หลายเดือนก่อน +4

    I dare say that it should be expressed clearly in the terms of the problem that [FE] is parallel to [AB], or angle BED=GEC=D45 otherwise we face nonsense.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      My apologies if I were not clear...

  • @jamestalbott4499
    @jamestalbott4499 10 หลายเดือนก่อน

    Thank you!

  • @georgebliss964
    @georgebliss964 10 หลายเดือนก่อน +1

    EF = 2 BE.
    Similar triangles ABC & FEC.
    4 / 12 = EF / (12 - BE ).
    4 / 12 = 2 BE / ( 12 - BE ).
    Cross multiplying.
    24 BE = 48 - 4 BE.
    28 BE = 48.
    BE = 48 / 28 = 12 / 7.
    The side length of square will be ( 12 / 7 ) x sq. rt. of 2.
    Area of square = ( 144 / 49 ) x 2.
    5.88.

  • @xyz9250
    @xyz9250 10 หลายเดือนก่อน +1

    The condition of EF perpendicular to BC was not given.

  • @afifamyouni673
    @afifamyouni673 10 หลายเดือนก่อน +1

    how did you know that EF is perpendicular to BC?

  • @digby5581
    @digby5581 5 หลายเดือนก่อน

    At no point in the question was it given that the square was not skew in the triangle. This was assumed to make the math work but was not given as a statement in the question.

  • @phungpham1725
    @phungpham1725 10 หลายเดือนก่อน

    1/BC=12 😀
    Drop the height FH to AB. The triangles AHF and ABC are similar so AH/HF= AB/BC= 4/12=1/3.
    Label AH= x so HF=3x.
    2/ We have: HB=EF = 2 HF ----> HB= 6x and---> AB= 7x = 4----> x=4/7
    The area of the rectangle HFEB = The area of the green square.
    -----> Area of the green square = 3x . 6x = 18 sq x= (18 .16)/49= 5.877 sq units😀

  • @johnwindisch1956
    @johnwindisch1956 10 หลายเดือนก่อน

    Got it!!

  • @davidbrand391
    @davidbrand391 10 หลายเดือนก่อน +3

    How is it concluded thqt FE is perpendicular to BC?

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      My apologies if I were not clear...

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 10 หลายเดือนก่อน

    This problem is so easy!! Just solving a System of 2 Equations with 2 Unknowns.
    BC = (48 / 4) = 12 lin un
    Now...
    Analytic Geometry Solution.
    1) Equation of Straight Line passing through point A and C: Slope = (- 4)/12 = (- 1)/3 ; so the First equation is y = -4x/3 + 4
    Considering O the center of the Red Square, EF = 2*OD; so the Slope of a Straight Line passing through point B and F is equal to 2; m = 2.
    2) Second Linear Equation: y = 2x
    3) As y= -1x/3 + 4 and y = 2x we must have:
    4) - x/3 + 4 = 2x ; - x/3 + 12/3 = 6x/3 ; 12/3 = (6x + x)/3 ; 12/3 = 7x/3 ; 12 = 7x ; x = 12/7
    5) OD = 12/7 ~ 1,714 li un and EF = 24/7 ~ 3,429 li un
    As we know that a diagonal of a Square is equal to D = Side * sqrt(2)
    In ou case Diagonal = 24/7 ; Side * sqrt(2) = 24/7 ; Side = 24 / (7 * sqrt(2)) ; Side = 24*sqrt(2)/14 ; Side = 12*sqrt(2)/7 ; Side ~ 4,424 lin un
    Green Square Area = [12*sqrt(2)/7] = 144*2 / 49 = 288 / 49 square units or approx. equal to 5,9 square units.
    Answer:
    Green Square Area is equal to (288/49) square units.

  • @himo3485
    @himo3485 10 หลายเดือนก่อน

    4*BC/2=24 BC=12
    FE=DG=2x
    4/12=2x/(12-x) 48-4x=24x
    28x=48 x=12/7
    Green Square area :
    24/7*24/7*1/2=288/49

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks ❤️

  • @lalkhithani6459
    @lalkhithani6459 9 หลายเดือนก่อน

    How FE is perpendicular to BC?

  • @robertlynch7520
    @robertlynch7520 10 หลายเดือนก่อน

    A different solution, by way of intersecting line functions! Game plan: find line function for hypotenuse, and for the upper left diagonal side of the square. Make 'em equal, find the intersection point, and then use that to determine side [𝒔]. The area is of course 𝒔²
      Area△ = ½ base height
      24 = ½ base 4
      12 = base
    △ABC hypotenuse drops 4 units, at [base = 12], so
      𝒚 = -⁴⁄₁₂𝒙 ⊕ 4
    With [⊕ 4] to account for the fact that the height of hypotenuse is [4] at [𝒙 = 0]. I then used same reasoning for the □ upper left diagonal:
      𝒚 = 𝒙 + 𝒔/√2
    Its a square, so by definition (when on its side) a 45° line has slope [1]. Don't know the size of the side though, so substituted in 𝒔/√2. Again because of 45° angle.
    Set these two equations equal to each other (to find the 𝒙 where they intersect at the top):
      𝒙 + 𝒔/√2 = -⅓𝒙 ⊕ 4 … rearrange finding 𝒙
      ⁴⁄₃𝒙 = 4 - 𝒔/√2 … multiply both sides by ¾
      𝒙 = 3 - (3𝒔)/4√2
    Now in particular, we're interested finding 𝒔, and we know that the interceptiong point must also be at 𝒔/√2, so
      𝒔/√2 = 3 - (3𝒔)/4√2 … solving for 𝒔 (multiply all terms by 4√2)
      4𝒔 ⊕ 3𝒔 = 3•4√2
      𝒔 = 12(√2)/7
      𝒔 = 2.4244
    And the area is that, squared
      𝒔² = (12√(2)/7)²
      𝒔 = 288 ÷ 49
      𝒔 = 5.8776
    Completing the goal of the problem, by way of intersecting lines! Yay!
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks

  • @DB-lg5sq
    @DB-lg5sq 10 หลายเดือนก่อน

    شكرا لكم على المجهودات
    اذاكان DEB=45 فان
    7/(جذر2 )DE=12
    S=DE^2=288/49

  • @lazydog6684
    @lazydog6684 10 หลายเดือนก่อน

    Why can you not split the 4 in half = 2. You now have the two lengths BD and BE. so use Pythagorean theory to get ED. 2 squared + 2 squared equals ED squared. Get the root and multiply to get the area.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks ❤️

    • @lazydog6684
      @lazydog6684 10 หลายเดือนก่อน

      Btw. I love these videos. I share them with my sons.

    • @TheUglyCuckling
      @TheUglyCuckling 10 หลายเดือนก่อน

      Dude just says "thnx" lol tf

  • @jan-willemreens9010
    @jan-willemreens9010 10 หลายเดือนก่อน

    ... Good day, I BC I = 12 (easy to figure out) , TAN(C) = 4/12 = 1/3 , naming 4 sides green square T , angle (GEC) = 45 deg. , triangle (DBE) is an isosceles 45 - 45 - 90 triangle , so I BE I = SQRT(2)*T/2 , I EC I = 12 - SQRT(2)*T/2 , I FE I = SQRT(2)*T ... finally TAN(C) = (SQRT(2)*T) / (12 - SQRT(2)*T/2) = 1/3 ... solving for T, and after a few basic algebraic steps we obtain ... T = 12*SQRT(2) / 7 ... Area (Green square) = T^2 = (12*SQRT(2) / 7)^2 = 144 * 2 / 49 = 288 / 49 u^2 ... thanking you for your as always clear presentation ... Happy weekend, Jan-W

  • @StephenRayWesley
    @StephenRayWesley 10 หลายเดือนก่อน

    (4)^2=16° {180°+16}=196° ((360°-196°)=√164° √4^√4:2^2 √2^√2 √2^√2 √2^2 √1^√1√ 1^√1 1^2 (x+1x-2)

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks ❤️

  • @bobgrimm2800
    @bobgrimm2800 10 หลายเดือนก่อน

    If DB=2, DE = sq. Rt. Of 8 = 2.828. Then the area of the square = 4.756, How is this wrong?

    • @bobgrimm2800
      @bobgrimm2800 10 หลายเดือนก่อน

      Sorry, the area would be 8.

  • @quigonkenny
    @quigonkenny 10 หลายเดือนก่อน

    Triangle ∆ABC:
    A = bh/2
    24 = b(4)/2 = 2b
    b = 24/2 = 12
    a² + b² = c²
    4² + 12² = CA²
    CA² = 16 + 144 = 160
    CA = √160 = 4√10
    Let x be the length of DB and BE and s be the length of the side of the square.
    Triangle ∆DBE:
    a² + b² = c²
    x² + x² = s²
    s² = 2x²
    s = √(2x²) = √2x
    Triangle ∆FEC
    FE/EC = AB/BC
    2x/12-x = 4/12 = 1/3
    6x = 12 - x
    7x = 12
    x = 12/7
    s = (√2)12/7 = (12/7)√2
    Square DEGF:
    A = s² = ((12/7)√2)² = 2(144/49)
    A = 288/49 ≈ 5.88

    • @saiakashanjalisakaray2865
      @saiakashanjalisakaray2865 10 หลายเดือนก่อน +1

      How could u say BE = BD??

    • @robertlynch7520
      @robertlynch7520 10 หลายเดือนก่อน

      ​@@saiakashanjalisakaray2865 Because
      △BED is a 45-45-90 △

    • @robertlynch7520
      @robertlynch7520 10 หลายเดือนก่อน

      Lovely use of extended characters! One tiny thing you might want to change in the future:
      s = √(2x²) = √2x ... is ambiguous.
      Is the x on the inside, or outside of the sqrt? It would be less ambiguous as
      s = √(2x²) = x√2
      Although that is a slightly less 'normal math book' form, it does clearly denote the [x] being outside the sqrt.
      GoatGuy

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks ❤️

    • @geetaganu1011
      @geetaganu1011 10 หลายเดือนก่อน +1

      ​@@robertlynch7520any proof?..
      It could be but that's only one case..
      BY moving the square it could make some other anle too

  • @EPaozi
    @EPaozi 10 หลายเดือนก่อน +1

    Rien ne dit que FE soit perpendiculaire à BC !!!!!

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Mes excuses si je n'ai pas été clair...

  • @user-jm7cx5zc9s
    @user-jm7cx5zc9s 10 หลายเดือนก่อน +2

    There are infinite number of squares.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      My apologies if I were not clear...

  • @ybodoN
    @ybodoN 10 หลายเดือนก่อน

    Interesting problem! Also if, instead of EF ⊥ BC (or BD = BE), we assume that DA = DB or DA = DF or AD = AF🤔
    In the video, if we draw a square with AB as diagonal, its vertex outside the triangle is collinear with C and D 😉

  • @andreadevescovi4166
    @andreadevescovi4166 10 หลายเดือนก่อน

    not too difficult

  • @johnwindisch1956
    @johnwindisch1956 10 หลายเดือนก่อน

    Gt i!!