Dive Deeper into Data Engineering on Databricks

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 พ.ย. 2024
  • To derive value from data, engineers need to collect, transform, and orchestrate data from various data types and source systems. However, today’s data engineering solutions support only a limited number of delivery styles, involve a significant amount of hand-coding, and have become resource-intensive. Modern data engineering requires more advanced data lifecycle for data ingestion, transformation, and processing. In this session, learn how the Databricks Lakehouse Platform provides an end-to-end data engineering solution - ingestion, processing and scheduling - that automates the complexity of building and maintaining pipelines and running ETL workloads directly on a data lake, so your team can focus on quality and reliability to drive valuable insights.
    Connect with us:
    Website: databricks.com
    Facebook: / databricksinc
    Twitter: / databricks
    LinkedIn: / data. .
    Instagram: / databricksinc

ความคิดเห็น • 6

  • @clarknerd
    @clarknerd 2 ปีที่แล้ว +6

    13:27 begins the demo

    • @frankmunz1659
      @frankmunz1659 2 ปีที่แล้ว +2

      hope you enjoyed that demo!

    • @clarknerd
      @clarknerd 2 ปีที่แล้ว +1

      @@frankmunz1659 😄awesome demo!

    • @temiomisore669
      @temiomisore669 ปีที่แล้ว +1

      @@frankmunz1659 is the notebook used in the demo available anywhere? The GitHub link, Thank you!

  • @my_j.a.r.v.i.s.
    @my_j.a.r.v.i.s. ปีที่แล้ว +1

    Great explanation of delta live tables.

  • @toulasantha
    @toulasantha ปีที่แล้ว

    Rivian dude, did he even say thank you to the presenter before him? 😂