Data Lakehouse: An Introduction

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 พ.ย. 2024

ความคิดเห็น • 42

  • @DenisGorev-xj5hl
    @DenisGorev-xj5hl ปีที่แล้ว +3

    It is amazing how concisely you put so much information in one video! Great!

  • @ayandapeter1681
    @ayandapeter1681 5 หลายเดือนก่อน +1

    Sir, I just want to say thank you so much, I've gone through many videos but was still confused, u made this crystal clear with all your conceptual approach.

    • @BryanCafferky
      @BryanCafferky  5 หลายเดือนก่อน

      Thank you for kind words. I'm so glad my videos are helping you. That's why I do them. I know this technology is not easy to learn so kudos to you for sticking with it.

  • @sujithravindran7082
    @sujithravindran7082 ปีที่แล้ว +2

    I really enjoyed the perspective you brought into the evolution. Great work. Please keep bringing in these great videos. Thank you very much.

    • @BryanCafferky
      @BryanCafferky  ปีที่แล้ว

      Thank You! and you're welcome.

  • @sundsrik2154
    @sundsrik2154 หลายเดือนก่อน

    Beautiful explanation! Loved it

  • @HasanCatalgol
    @HasanCatalgol 4 หลายเดือนก่อน

    Underrated channel, really quality information.

  • @kamalesht5942
    @kamalesht5942 ปีที่แล้ว +1

    Your videos are really helping me improve the core knowledge on Data Engineering concepts. Thankyou!

    • @BryanCafferky
      @BryanCafferky  ปีที่แล้ว +1

      Great to hear! You're welcome.

  • @gardnmi
    @gardnmi 2 ปีที่แล้ว +4

    I'd love to see a non-bias comparison between delta lake, hudi, and iceberg.

    • @BryanCafferky
      @BryanCafferky  2 ปีที่แล้ว +2

      So would I. lol. Iceberg seems to be Snowflake's version of Lakehouse. Not sure about hudi.

    • @BryanCafferky
      @BryanCafferky  2 ปีที่แล้ว +1

      Looks like Amazon is promoting hudi.

  • @antwanto
    @antwanto 2 หลายเดือนก่อน

    wow that was very informative and amazing, thank you for your efforts

  • @janni9789
    @janni9789 ปีที่แล้ว +1

    Again, perfectly explained. Thank you

  • @brokejohnnylive1530
    @brokejohnnylive1530 5 หลายเดือนก่อน

    Dude you are on the money!! Agree all 100%.

  • @wennie2939
    @wennie2939 ปีที่แล้ว +1

    Best video on this topic ever!

  • @ioannisnikolaospappas6703
    @ioannisnikolaospappas6703 4 หลายเดือนก่อน

    Life saver 🫡 Thank you sir!

  • @stu8924
    @stu8924 ปีที่แล้ว

    Thank you Bryan.

  • @rich111296
    @rich111296 ปีที่แล้ว +1

    do you have an example in any of your videos connecting to an s3 bucket specifying an endpoint within databricks? basically how to connect to an s3 bucket from a service other than aws? Thanks

    • @BryanCafferky
      @BryanCafferky  ปีที่แล้ว

      Hmmmm.... No have not tried that. Have you googled it?

    • @rich111296
      @rich111296 ปีที่แล้ว

      @@BryanCafferky yeah ha, i did find a solution eventually, i think somewhere from stack overflow, searched around several places so i don't have the exact source
      "sc

    • @rich111296
      @rich111296 ปีที่แล้ว

      and run the function obvi

  • @maheshthati1320
    @maheshthati1320 11 หลายเดือนก่อน

    Best explanation

  • @BhaveshKumar-dz8hq
    @BhaveshKumar-dz8hq 8 หลายเดือนก่อน

    you are a hidden gem

  • @potnuruavinash
    @potnuruavinash 6 หลายเดือนก่อน +1

    Can we implement data lakehouse with open source tools like spark, presto & hive metastore ? is there any alternative for unity catalog in open source eco system

    • @BryanCafferky
      @BryanCafferky  6 หลายเดือนก่อน

      Lakehouse is just Delta Lake, i.e., delta tables which are available in open source Spark so yes. Unity Catalog is really just a catalog of catalogs so you could build your own central catalog by extracting the meta data from local Hive metastores. I believe Spark tends to work one cluster at a time unlike Databricks which spins any number of clusters up as needed so not sure if UC could be implemented on open source Spark but perhaps?

  • @jayashreetheagarajan2708
    @jayashreetheagarajan2708 ปีที่แล้ว

    Amazing contents.. Thank you Bryan

    • @BryanCafferky
      @BryanCafferky  ปีที่แล้ว

      You're Welcome! Glad it is helpful!

  • @GILLOS21
    @GILLOS21 ปีที่แล้ว

    Amazing lecture! Thank you!

  • @prarthananeesh
    @prarthananeesh 8 หลายเดือนก่อน

    Is it mainly used for OLAP or can this be used for OLTP also ?

    • @BryanCafferky
      @BryanCafferky  7 หลายเดือนก่อน

      It's meant for data warehousing, i.e., warehouse = lake + house, so warehouse on a data lake. OLTP has stringent requirements like high data transactions concurrency, referential integrity, etc. Delta logging is done at a file level whereas SQL databases log at a row level. See my video on Delta logs to get an understanding of what I mean.

    • @BryanCafferky
      @BryanCafferky  7 หลายเดือนก่อน

      Delta Logs 1: th-cam.com/video/pCH_qNqnms0/w-d-xo.html
      Delta Logs 2: th-cam.com/video/ZSTJLfZy_Hs/w-d-xo.html

  • @ChristianWDegn
    @ChristianWDegn ปีที่แล้ว

    Good presentation Thank!

  • @prarthananeesh
    @prarthananeesh 8 หลายเดือนก่อน

    Can we use the lakehouse to replace a transactional system ?

    • @BryanCafferky
      @BryanCafferky  7 หลายเดือนก่อน

      See my reply to your question about OLTP.

  • @avishaysebban1515
    @avishaysebban1515 ปีที่แล้ว

    you're the best thank you.

    • @BryanCafferky
      @BryanCafferky  ปีที่แล้ว

      You're welcome! Thanks for watching.

  • @WeAreTeamNovus
    @WeAreTeamNovus ปีที่แล้ว

    Amazing stuff, as always!