Germany | Can you solve this? | Math Olympiad

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 10

  • @thelifeclass
    @thelifeclass 15 วันที่ผ่านมา

    Interesting 🎉

  • @anisimov2013
    @anisimov2013 15 วันที่ผ่านมา +1

    Первое действие логарифмируем по основанию 8 левую и правую часть. И далее получить ответ гораздо проще. В несколько действий. 2/3*(логарифм по основанию 8 от 5 -1)

  • @stpat7614
    @stpat7614 15 วันที่ผ่านมา

    What about the complex roots?
    8^(x + 1) = 50
    8^x * 8^1 = 50
    8^x * 8 / 8 = 50 / 8
    8^x * 1 = 2 * 5^2 / 2^3
    8^x = 5^2 / 2^2
    (2^3)^x = (5 / 2)^2
    2^(3 * x) = ([(5 / 2)^2]^[1 / 3])^3
    2^(x * 3) = ([5 / 2]^[2 * (1 / 3)])^3
    (2^x)^3 = ([5 / 2]^[2 / 3])^3
    Let a = 2^x, and b = (5 / 2)^(2 / 3)
    (2^x)^3 = ([5 / 2]^[2 / 3])^3
    => a^3 = b^3
    => a^3 - b^3 = b^3 - b^3
    => a^3 - b^3 = 0
    => (a - b)(a^2 + ab + b^2) = 0
    => (a - b)(1 * a^2 + b * a + b^2) = 0
    => a - b = 0, or 1 * a^2 + b * a + b^2 = 0
    Suppose a - b = 0
    a - b = 0
    a - b + b = 0 + b
    a = b
    Remember, a = 2^x, and b = (5 / 2)^(2 / 3)
    2^x = (5 / 2)^(2 / 3)
    ln(2^x) = ln([5 / 2]^[2 / 3])
    x * ln(2) = ln([5 / 2]^[2 / 3])
    x * ln(2) / ln(2) = ln([5 / 2]^[2 / 3]) / ln(2)
    x * log_2(2) = log_2([5 / 2]^[2 / 3])
    x * 1 = (2 / 3) * log_2(5 / 2)
    x = (2 / 3) * (log_2[5] - log_2[2])
    x = (2 / 3) * (log_2[5] - 1)
    x = 2 * (log_2[5] - 1) / 3
    x = 2 * log_2(5) / 3 - 2 * 1 / 3
    x = 2 * log_2(5) / 3 - 2 / 3
    Suppose 1 * a^2 + b * a + b^2 = 0
    1 * a^2 + b * a + b^2 = 0
    a = (-b +/- sqrt[b^2 - 4 * 1 * b^2]) / (2 * 1)
    a = (-b +/- sqrt[1 * b^2 - 4 * b^2]) / (2)
    a = (-b +/- sqrt[(1 - 4) * b^2]) / 2
    a = (-b +/- sqrt[(-3) * b^2]) / 2
    a = (-b +/- sqrt[(-1) * 3 * b^2]) / 2
    a = (-b +/- sqrt[-1] * sqrt[3] * sqrt[b^2]) / 2
    a = (-b +/- i * sqrt[3] * b) / 2
    a = b * (-1 +/- i * sqrt[3] * 1) / 2
    Remember, a = 2^x, and b = (5 / 2)^(2 / 3)
    2^x = (5 / 2)^(2 / 3) * (-1 +/- i * 3^[1 / 2]) / 2^1
    2^x = 2^(-1) * (5 / 2)^(2 / 3) * (-1 +/- i * 3^[1 / 2])
    2^x = 2^(-1) * 5^(2 / 3) * (2^[-1])^(2 / 3) * (-1 +/- i * 3^[1 / 2])
    2^x = 2^(-1) * (2^[-1])^(2 / 3) * 5^(2 / 3) * (-1 +/- i * 3^[1 / 2])
    2^x = 2^(-1) * 2^([-1] * [2 / 3]) * 5^(2 / 3) * (-1 +/- i * 3^[1 / 2])
    2^x = 2^(-1) * 2^(-2 / 3) * 5^(2 / 3) * (-1 +/- i * 3^[1 / 2])
    2^x = 2^(-1 - [2 / 3]) * 5^(2 / 3) * (-1 +/- i * 3^[1 / 2])
    2^x = 2^(-5 / 3) * 5^(2 / 3) * (-1 +/- i * 3^[1 / 2])
    ln(2^x) = ln(2^[-5 / 3] * 5^[2 / 3] * [-1 +/- i * 3^(1 / 2)])
    x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * [-1 +/- i * 3^(1 / 2)])
    x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * [-1 + i * 3^(1 / 2)]), or x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * [-1 - i * 3^(1 / 2)])
    Suppose x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * [-1 + i * 3^(1 / 2)])
    x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * [i^2 + i * 3^(1 / 2)])
    x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * i * [i + 1 * 3^(1 / 2)])
    x * ln(2) / ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * i * [i + 3^(1 / 2)]) / ln(2)
    x * log_2(2) = ln(2^[-5 / 3]) / ln(2) + ln(5^[2 / 3]) / ln(2) + ln(i) / ln(2) + ln(i + 3^[1 / 2]) / ln(2)
    x * log_2(2) = ln(2^[-5 / 3]) / ln(2) + ln(5^[2 / 3]) / ln(2) + ln(e^[i * tau / 4]) / ln(2) + ln(i + 3^[1 / 2]) / ln(2)
    x * 1 = (-5 / 3) * ln(2) / ln(2) + (2 / 3) * ln(5) / ln(2) + (i * tau / 4) * ln(e) / ln(2) + ln(i + 3^[1 / 2]) / ln(2)
    x = (-5 / 3) * log_2(2) + (2 / 3) * log_2(5) + (i * tau / 4) * 1 / ln(2) + log_2(i + 3^[1 / 2])
    x = (-5 / 3) * 1 + (2 / 3) * log_2(5) + i * tau / (4 * ln[2]) + log_2(i + 3^[1 / 2])
    x = (-5 / 3) + 2 * log_2(5) / 3 + i * tau / (4 * ln[2]) + log_2(i + 3^[1 / 2])
    Suppose x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * [-1 - i * 3^(1 / 2)])
    x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * [-1 - 1 * i * 3^(1 / 2)])
    x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * [-1] * [1 + i * 3^(1 / 2)])
    x * ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * i^2 * [1 + i * 3^(1 / 2)])
    x * ln(2) / ln(2) = ln(2^[-5 / 3] * 5^[2 / 3] * i^2 * [1 + i * 3^(1 / 2)]) / ln(2)
    x * log_2(2) = ln(2^[-5 / 3]) / ln(2) + ln(5^[2 / 3]) / ln(2) + ln(i^2) / ln(2) + ln(1 + i * 3^[1 / 2]) / ln(2)
    x * 1 = ln(2^[-5 / 3]) / ln(2) + ln(5^[2 / 3]) / ln(2) + ln(e^[i * tau / 2]) / ln(2) + ln(1 + i * 3^[1 / 2]) / ln(2)
    x = (-5 / 3) * ln(2) / ln(2) + (2 / 3) * ln(5) / ln(2) + (i * tau / 2) * ln(e) / ln(2) + ln(1 + i * 3^[1 / 2]) / ln(2)
    x = (-5 / 3) * log_2(2) + (2 / 3) * log_2(5) + (i * tau / 2) * 1 / ln(2) + log_2(1 + i * 3^[1 / 2])
    x = (-5 / 3) * 1 + 2 * log_2(5) / 3 + i * tau / (2 * ln[2]) + log_2(1 + i * 3^[1 / 2])
    x = (-5 / 3) + 2 * log_2(5) / 3 + i * tau / (2 * ln[2]) + log_2(1 + i * 3^[1 / 2])
    x1 = -(2 / 3) + 2 * log_2(5) / 3
    x2 = -(5 / 3) + 2 * log_2(5) / 3 + i * tau / (4 * ln[2]) + log_2(i + 3^[1 / 2])
    x3 = -(5 / 3) + 2 * log_2(5) / 3 + i * tau / (2 * ln[2]) + log_2(1 + i * 3^[1 / 2])

  • @dougsholly9323
    @dougsholly9323 11 วันที่ผ่านมา

    I was super confused until I realized the "+1" was also in the exponent.

  • @AvikDey-z6y
    @AvikDey-z6y 14 วันที่ผ่านมา

    8^x.8=50
    Or
    8^x.8=50
    Or 8^x=50/8
    Or xlog8=log(50/8)
    Or x={( log50- log8) /log8}
    (এর পর হয়তো আরো ভাঙা যাবে)

  • @Hello1-t1y
    @Hello1-t1y 12 วันที่ผ่านมา

    log8_6.25

  • @kidas0808
    @kidas0808 14 วันที่ผ่านมา

    8^^(x+1)=50
    (x+1)*log(8)=log(50)
    (x+1)=log(50)/log(8)
    x+1=1,699/0,903=1,882
    x=1,882-1=0.882
    x=0.882
    8^^(0,882+1)=50
    8^^1.882=50.07

  • @thisjosiah
    @thisjosiah 12 วันที่ผ่านมา

    You can just take the logarithm of base eight and then subject one. It shouldn't be this hard

  • @AlexanderSemashkevich
    @AlexanderSemashkevich 15 วันที่ผ่านมา

    8^x×8=50
    8^x=50/8=25/4
    x=(log25-log4)/log8=⅔((log5/log2)-1)
    x≈⅔((0.699/0.301)-1)≈796/903≈0.8815
    Deviation is about 0.0002
    8^(0.8815+1)≈50.02