A Simple Geometric Proof of Half-Angle Sine-Cosine Formula - Must-Know Trig Identities

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 12

  • @erahamzah6983
    @erahamzah6983 17 วันที่ผ่านมา

    Thansk alot for this explanation!

  • @greedskith
    @greedskith ปีที่แล้ว +3

    this figure alone is very powerful to derive many trig fromula, i loved this

  • @mathlab_jordan
    @mathlab_jordan 2 ปีที่แล้ว +2

    Exactly what I needed. Thanks!

  • @aksaler1765
    @aksaler1765 ปีที่แล้ว +2

    thank you so much !

  • @Lyzon0
    @Lyzon0 ปีที่แล้ว +1

    thanks👍

  • @thomasolson7447
    @thomasolson7447 10 หลายเดือนก่อน +1

    I like doing stuff wrong. Wasting everyone's time is also a hobby of mine.
    A:=arctan(i*3/5)
    If you do the expansion with 'e' is fun. You'll learn about hyperbolic trig functions.
    So, there is a dual function going on here. It's kind of top-secret cool stuff. In a situation where you have a right-angle triangle, you use the hypotenuse in the denominator instead of the other leg.
    sin^2(A/2)=((1-(cos(A))^2)/2)=-1/8
    sin(A/2)=isqrt(2)/4
    cos^2(A/2)=(1+(cos(A))^2)/2=9/8
    cos(A/2)=3sqrt(2)/4
    I suppose I'm not being careful. I'm going to ignore the whole -1 thing on the x-axis and check the distance. And I'll remove the 'i'. If I don't, the distance is '1' and it's boring.
    sqrt((sqrt(2)/4)^2+(3sqrt(2)/4)^2) = sqrt(5)/2
    So, initially I did arctan wrong. Instead of two legs of a rational 90-degree triangle, I used a leg over the hypotenuse. So, it was a 3 4 5 triangle in the unit circle. I think this only works with rational triangles. Something to do with the dual functionality of the rational trig functions and that complex number.
    cosh(arctanh(3/5)/2) = 3sqrt(2)/4
    sinh(arctanh(3/5)/2) = sqrt(2)/4 **
    ** Ignore the non-existent imaginary value at your own peril.
    You can test it.
    tanh(arctanh(3/5)/2)=i/3
    (i/3+i/3)/(1-(i/3)^2)= i3/5
    i3/5 is what we started with.
    So, we can make a 90-degree triangle with these three values (sqrt(2)/4. 3sqrt(2)/4, sqrt(5)/2).
    The altitudes are 3sqrt(2)/4, sqrt(2)/4, and 3sqrt(5)/20
    The area is 3/16.
    Now for cosine law. cos(C)=(a^2+b^2-c^2)/(2*a*b), yeah I also did that wrong.
    ((sqrt(2)i/4)^2+(3sqrt(2)/4)^2-(sqrt(5)/2)^2)/(2(sqrt(2)i/4)(3sqrt(2)/4)) = i/3
    I haven't bother to check if the tangent half angle is always that yet.
    If you were to do relativistic velocity addition and you wanted to add c/3 to c/3 you would go at c3/5 m/s.

  • @TheDHemant
    @TheDHemant 11 หลายเดือนก่อน

    Nice nice !!

  • @gabeh7923
    @gabeh7923 ปีที่แล้ว

    Hi, I have a question please. Can you please explain how you arrived at 1 + cos(x)=AH and how 2+2cos(x)= (AC)^2. Thanks!

    • @thinkinginmath3009
      @thinkinginmath3009  ปีที่แล้ว

      AO=1 and OH=1• cos(x) so AH=1+cos(x)
      The other is from a property of right triangle AC^2 = AH • AB = 2+2 cos(x)

  • @xzavierreed
    @xzavierreed 10 หลายเดือนก่อน

    triangle ACB is not a right triangle. ACH is a right triangle.

    • @trolloftime5340
      @trolloftime5340 3 หลายเดือนก่อน

      Any triangle formed between a point on the semicircumference and the diameter will be right. Thale’s theorem