trig integrals involving secant and tangent (calculus 2)

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 พ.ย. 2024

ความคิดเห็น • 28

  • @puddleduck1405
    @puddleduck1405 ปีที่แล้ว +12

    I used to struggle so much with these kind of integrals, I never knew when to use u=secx and when to do u=tanx. I have a really good understanding of this now! Thank you, and God bless you

  • @petereziagor4604
    @petereziagor4604 3 ปีที่แล้ว +8

    So, I used TH-cam search to look for the integral of secx dx and I saw your video from six years ago
    It was really nice 🙌

  • @DersoEyayaw
    @DersoEyayaw 2 หลายเดือนก่อน +1

    Really good thanks for you explanation

  • @eyasuamelo284
    @eyasuamelo284 13 วันที่ผ่านมา

    Thank you so much it's exactly good and also pleas do the integration of √tsint

  • @searacha5604
    @searacha5604 3 ปีที่แล้ว +3

    This is so easy to understand. Thank you!

  • @getezra1
    @getezra1 2 ปีที่แล้ว

    on prob 1 if we take u = sec x, and rewrite tanxset^2x as tanxsecx.secx then du/dx = secxtanx which will workout seamlessly afterwards. (just optional)

  • @neomatrix-1
    @neomatrix-1 หลายเดือนก่อน

    great videos thanks

  • @salaheddinemath272
    @salaheddinemath272 2 ปีที่แล้ว +2

    Thanks for your help

  • @lanomusambazi8654
    @lanomusambazi8654 2 ปีที่แล้ว +1

    Suppose secant has an odd power, how do we integrate such?

  • @theepicfailguy127
    @theepicfailguy127 3 ปีที่แล้ว +3

    In the first can't we just let u as tanx and then integrate u^3 and tanx and multiply them

  • @ShinyTreecko
    @ShinyTreecko ปีที่แล้ว +2

    At 7:32, during the U sub operation why do we transform only the sec^2(x) into U? If we made U == sec(x) then wouldn't the other "sec(x)" in the integral also become a u? Shouldn't the equation be "(U^2) * (U) * (tan(x)) " divided by du, sec(x)tan(x). I am probably over thinking this, but I've had this question since I started doing trig integrals.

    • @Eng586
      @Eng586 6 หลายเดือนก่อน

      When doing u sub you can choose what you want to set as u, as long as it helps you integrate it. In this case he only chose sec^2x because if you do u sub du=secxtanx which cancels out the other part and leaves you with something you can integrate easily (u^2)

  • @Nikitashm
    @Nikitashm 10 หลายเดือนก่อน +1

    i love you havent even watched the video yet

  • @mathsandsciencechannel
    @mathsandsciencechannel 3 ปีที่แล้ว +1

    Nice solution

  • @udaysrivastava1957
    @udaysrivastava1957 3 ปีที่แล้ว +4

    I have a problem for question 1.
    integral tanx sec²x dx
    you wrote it as (tan²x)/2
    but it can also be (sec²x)/2
    But if both are the same then
    tan²x = sec²x
    tan x = sec x
    which means
    x is (1/2) (4nπ + π)
    Why are we getting the values of x??

    • @bprpcalculusbasics
      @bprpcalculusbasics  3 ปีที่แล้ว +4

      Yea. That’s called “off by a constant”. I have an old video explaining it in details.

    • @lanomusambazi8654
      @lanomusambazi8654 2 ปีที่แล้ว

      Mmmmm no I don't agree to this.

  • @mathevengers1131
    @mathevengers1131 3 ปีที่แล้ว +2

    Giraffe has learned all that now.

    • @mathevengers1131
      @mathevengers1131 3 ปีที่แล้ว

      @@aashsyed1277 yeah but less than before.

    • @mathevengers1131
      @mathevengers1131 3 ปีที่แล้ว

      @@aashsyed1277 Rising Star Math TH-camres Challenge

  • @RATsnak3
    @RATsnak3 15 วันที่ผ่านมา

    U can't really be helping someone and then go like "now the answer is obvious, figure it out on your own"
    this is why I find it hard to follow your videos sometimes.

  • @mr.ahlaguchiha2770
    @mr.ahlaguchiha2770 2 ปีที่แล้ว +4

    1:17 min Mistake spotted 🥸, integrale of tan x isn t ln sec x actually it is ln cos x . since secx equal to 1/cosx

    • @ital3nt3d
      @ital3nt3d 2 ปีที่แล้ว +2

      Little late, but for anyone needing clarification on this in the future:
      the integral of tanx is indeed -lncos x, but the in the case of this video in problem 1, we arent finding the integral of tan x per se and using u-sub instead. What i mean is we let u = secx, du = secx tanx dx, thus dx = 1/secx tan x....but dont forget to replace the secx in the dx we calculated with u. So dx=1/u tanx. If you then replace dx in our original setup and replace secx with u: (u^2-1)tanx * (1/u tanx). Tanx cancels out and we get (u^2-1)/u. Rewrite as (u^2/u)-(1/u) and simplify to get u - (1/u) and thus the integral of this would be (u^2/2)-ln(|u|), replace the u's for sec x and we get the final answer (sec^2x/2) - ln|secx|. Hope that helps.

    • @puddleduck1405
      @puddleduck1405 ปีที่แล้ว +1

      nope he's right. the tan(x) is sin(x)/cos(x). the derivative of cos(x) is MINUS sin(x). so the integral of tan(x) is -ln(cosx). Then using log rules, we can bring the minus up, so that it is ln(1/cosx) which is ln(secx).

    • @puddleduck1405
      @puddleduck1405 ปีที่แล้ว +1

      @@ital3nt3d nah bro u said the integral of tanx is ln cosx. its not. it is -ln(cosx). which is the same as ln(secx) using log rules :)

    • @ital3nt3d
      @ital3nt3d ปีที่แล้ว

      @moonlight_studies hey. You're right it was a typo and I fixed it. The final form of the answer was correct tho with the negative being present. I don't really remember any of this tbh lmao but point of my comment was to further explain the steps used to show that a mistake wasn't made by the video (as per the original comment). Granted I'm just another student so could wrong but the work made sense at the time and I asked on chegg and symbolab at a later point. Gl!

    • @puddleduck1405
      @puddleduck1405 ปีที่แล้ว

      @@ital3nt3d haha no worries, Gl! :D