267 - Processing whole slide images (as tiles)

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ก.พ. 2025

ความคิดเห็น • 18

  • @behnoudshafizadeh3281
    @behnoudshafizadeh3281 2 ปีที่แล้ว +6

    You are my motivation in the medical imaging field, thanks Dr. Sreeni.

  • @sepidkh6249
    @sepidkh6249 2 ปีที่แล้ว

    That was great. Thanks for your generosity in teaching.

  • @sudiptapaul2825
    @sudiptapaul2825 2 ปีที่แล้ว +5

    Will you have any separate videos on how to combine those small tiles and add them back to the original WSI?

  • @yohannisisa8207
    @yohannisisa8207 ปีที่แล้ว

    Dr. Sreeni. thanks for interseted video but how we preprocess image all the fill data

  • @KarthikArumugham
    @KarthikArumugham ปีที่แล้ว

    Hello Dr. Sreeni. Thank you for the great tutorial.
    I've got a WSI image dataset of tumors where there are multiple stain types, besides H&E. How do I detect these stain types and preprocess the images to make them uniform for the purposes of training a deep learning model to classify the tumor types?

  • @SherifAbdelAziz-f2x
    @SherifAbdelAziz-f2x ปีที่แล้ว

    It is really fantastic video. I highly appreciate your effort
    I have only one question, If i have a whole slide image with some annotation for multi object for segmentation, can i extract tile and extract masks for this annotated tiles for multi instance segmentation ?
    If yes how can i do that?

  • @larrosapablo
    @larrosapablo 2 ปีที่แล้ว

    Thanks for this contribution!!!, do you know how to train models using tiles?.

  • @animeshhalder2844
    @animeshhalder2844 ปีที่แล้ว

    Hello Sir, thank you for the amazing tutorial. Can you please share the code for separating blank, partial and good images? It will be a great help to me.

  • @sepidkh6249
    @sepidkh6249 2 ปีที่แล้ว

    Thanks again.
    I would appreciate it if you could provide me with your opinion on the "approximate number of patches that are enough for tumour detection in WSIs (e.g. 100k or millions or ...).
    I would like to know how many patches roughly should be extracted for training.

  • @sumonabiswas4884
    @sumonabiswas4884 2 ปีที่แล้ว

    Nice tutorial. Following you from the beginning of the channel. Recently I am working with WSI. Used the same process to visualize the mask of a wsi which is in .tif format, but it displays black only. Need your guidance.

  • @elyesachour6333
    @elyesachour6333 2 ปีที่แล้ว

    Amazing video!!
    I was wandering if I can save my trained model so I can call it one more time without rerunning it and how to do so.
    I'm actually trying to classify 3 images classes with a limited number of features like you have done in course number 158b and I'm getting an 0.59 in accuracy, I've tried data augmentation with ImageDataGenerator but the accuracy has become 0.58.
    What should I do to increase it.
    Thank you 🌹🌹

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว +1

      To save and load sklearn models you can use Pickle.
      import pickle
      #Save the trained model as pickle string to disk for future use
      filename = "sandstone_model"
      pickle.dump(model, open(filename, 'wb'))
      #To test the model on future datasets
      loaded_model = pickle.load(open(filename, 'rb'))
      result = loaded_model.predict(X)
      If you accuracy is not improving, play with the classifier parameters. If that doesn't help, you need more training data. You cannot augment your way to better accuracy.

  • @ИгорьЛёвин-ъ8э
    @ИгорьЛёвин-ъ8э 2 ปีที่แล้ว

    Felicidades, es un buen ejemplo. 131 sentadillas son unos LIKESEX.Uno muchas y un buen ejercicio. Se deja ver que hay muy buenos resultados 😍👍 Saludos desde la Cd.. de world 🌹😉💖 los mortalesf abian apreciado tan hermosa mujer.k

  • @caiyu538
    @caiyu538 2 ปีที่แล้ว

    Thumb up.

  • @shubha1Ana2
    @shubha1Ana2 2 ปีที่แล้ว

    Hello.. very informative. CAn I connect with you over email plz to discuss my doubts about classification of H&E WSI? Kindly share email ID

    • @DigitalSreeni
      @DigitalSreeni  2 ปีที่แล้ว

      Sorry, I get 100+ emails every day asking for help. I wish I had that kind of bandwidth to help everyone.