Cauchy's Theorem Part 2

แชร์
ฝัง
  • เผยแพร่เมื่อ 8 ก.พ. 2025
  • In this video we state and prove Cauchy's theorem for finite groups

ความคิดเห็น • 12

  • @chrisye3974
    @chrisye3974 5 ปีที่แล้ว +1

    Your maths videos are absolutely great! It would be brilliant to upload more of them, they are really helpful! Thank you!

  • @debendragurung3033
    @debendragurung3033 6 ปีที่แล้ว +1

    Brilliant! Thank you this is my first time knowing and learning Cauchys theorm

  • @nirgle
    @nirgle 7 ปีที่แล้ว +1

    These videos are great. Thanks for recording them.

  • @rasraster
    @rasraster 7 ปีที่แล้ว +1

    Excellently presented. Thanks.

  • @yeast4529
    @yeast4529 ปีที่แล้ว

    Thanks, very helpful

  • @danialdunson
    @danialdunson 3 ปีที่แล้ว

    thank you!

  • @Sandwichch3
    @Sandwichch3 5 ปีที่แล้ว

    thank you so much!

  • @michaelwoodhams7866
    @michaelwoodhams7866 2 ปีที่แล้ว

    How many cyclic subgroups of order p can there be?
    First I ask: How many elements are there of order p? Let this number be X.
    If group element 'a' is of order p, then so is a^2, a^3, ... a^{p-1}. I.e. elements of order p come in sets of size p-1. I.e. p-1 divides X.
    By the orbit stabilizer argument in the proof, the number of orbits of size one is divisible by p. But one of those orbits is the tuple of all identities, and every other orbit of size one is a tuple of an element of order p. There are X of these, by definition. I.e. p divides X+1.
    Given that p-1 divides X and p divides X+1, a little algebra gives that X is of the form
    X = (qp+1)(p-1) where q is a non-negative integer.
    The simplest case is q=0, then X=p-1. In this case, our original group has only one cyclic subgroup of order p.
    In general, there are X/(p-1) = qp+1 cyclic subgroups of order p.

  • @TheWombatGuru
    @TheWombatGuru 6 ปีที่แล้ว +1

    Do the colors denote something or do you just like coloring everything a random color?

  • @ravena2023
    @ravena2023 5 ปีที่แล้ว

    does the group action cycle in the sense of 1*p-1 goes back to 0
    or do I understand it wrongly?

    • @priyathammanoharkoka4300
      @priyathammanoharkoka4300 5 ปีที่แล้ว

      Am with u 😶

    • @satyabratrath8657
      @satyabratrath8657 5 ปีที่แล้ว

      Yes..indeed it is.
      First we move everything to the right by p-1 then we move everything by 1 which results in not moving at all...which is the 0 action