Does math have a major flaw? - Jacqueline Doan and Alex Kazachek

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 พ.ย. 2024

ความคิดเห็น • 448

  • @ShubhGG12
    @ShubhGG12 6 หลายเดือนก่อน +1230

    I watched the Vsauce video on the Banach-Tarski Paradox about 4 times before somewhat grasping the concept...

    • @jbassstrat
      @jbassstrat 6 หลายเดือนก่อน +78

      Thats the one Vsauce video I simply cannot understand

    • @ILoveLuhaidan
      @ILoveLuhaidan 6 หลายเดือนก่อน +41

      I watched it when I was binge watching all his videos for the first time when I was 11. I remember being genuinely dizzy after that.

    • @Simpson17866
      @Simpson17866 6 หลายเดือนก่อน +54

      He went into a lot of the technical detail, but the most important base principle is
      ♾️ x 2 = ♾️
      The practical-sounding description of “cutting up a ball and putting the pieces together into two balls” disguises the fact that at its core, this is like Hilbert’s Infinite Hotel

    • @lyrichives7859
      @lyrichives7859 6 หลายเดือนก่อน

      Us

    • @MrFright2010
      @MrFright2010 6 หลายเดือนก่อน +11

      OR DID YOU?!

  • @JaybeePenaflor
    @JaybeePenaflor 6 หลายเดือนก่อน +303

    I first encountered the Banach-Tarski paradox in my subject for mathematical proof. When we discussed certain set-theoretical concepts, we naturally covered the Axiom of Choice. Our teacher introduced us to the Banach-Tarski paradox and promised we would eventually learn its proof as we attended higher mathematical classes. I needed to learn concepts from mathematical analysis and topology to actually understand the proof.

    • @Schmidtelpunkt
      @Schmidtelpunkt 6 หลายเดือนก่อน +1

      What do I have to study to even just understand what this problem is about?

    • @JaybeePenaflor
      @JaybeePenaflor 6 หลายเดือนก่อน +10

      ​@@Schmidtelpunkt If you read the proofs of the Banach-Tarski paradox, you'll need extensive knowledge on group theory, set theory, analysis, and linear algebra. The Axiom of Choice is usually introduced in foundational math courses (usually where principles of mathematical proof is introduced).

    • @JaybeePenaflor
      @JaybeePenaflor 6 หลายเดือนก่อน

      @@Schmidtelpunkt This proof is longer, but is more detailed. Plus, I love how the author manages to explain some of the concepts.
      www.diva-portal.org/smash/get/diva2:1672461/FULLTEXT01.pdf

    • @Jose_Hunters_EWF_Remixes
      @Jose_Hunters_EWF_Remixes 6 หลายเดือนก่อน +6

      @@Schmidtelpunkt The Axiom of Choice has such incredibly diverse and apparently formulations
      I once wrote a paper which merely listed these various formulation, with a discussion of how bizarrely unconnected these are
      I'll take a stab at it by calling it the mathematician's get out of jail free card for proof-writing - with the realization that it's an adequate conceptualization

    • @Jose_Hunters_EWF_Remixes
      @Jose_Hunters_EWF_Remixes 6 หลายเดือนก่อน +3

      ​@@JaybeePenaflor No topology? I assumed BTP would require it. It _sounds_ like topology to me

  • @awesomehpt8938
    @awesomehpt8938 6 หลายเดือนก่อน +1532

    Does maths have a fatal flaw?
    Yes, it makes my head hurt

    • @92RKID
      @92RKID 6 หลายเดือนก่อน +12

      My brain hurts when it comes to math because I have Dyscalculia and math is a foreign language that I can't ever understand.

    • @savitatawade2403
      @savitatawade2403 6 หลายเดือนก่อน +3

      ​@@92RKIDwth even is that?

    • @canyoupoop
      @canyoupoop 6 หลายเดือนก่อน +5

      Maths make my headache go away I do it as a hobby sometimes

    • @arifhossain9751
      @arifhossain9751 6 หลายเดือนก่อน +11

      @@savitatawade2403
      its like Dyslexia, but specific to numbers

    • @oldcowbb
      @oldcowbb 6 หลายเดือนก่อน +1

      whose flaw is that

  • @akitoya_lover
    @akitoya_lover 6 หลายเดือนก่อน +423

    my head hurts just thinking about the video 😭😭😭 but the animation is adorable omg

  • @Ardalos_Solarda
    @Ardalos_Solarda 6 หลายเดือนก่อน +456

    In fact, the Banach-Tarski paradox is an abbreviation. Full name is the Banach-Tarski Banach-Tarski paradox paradox

    • @abinashdas6040
      @abinashdas6040 6 หลายเดือนก่อน +14

      I see what you did there 🗿

    • @Martin-pb7ts
      @Martin-pb7ts 6 หลายเดือนก่อน +12

      Or the BTBTPP?

    • @lrwerewolf
      @lrwerewolf 6 หลายเดือนก่อน +13

      Wouldn't that make it the Banach-Tarski^n paradox^n, for arbitrarily high values of n, via iteration of the process?

    • @michaelwarren2391
      @michaelwarren2391 6 หลายเดือนก่อน +2

      So it's a pair o' paradoxes?

  • @Equ1n0x88
    @Equ1n0x88 6 หลายเดือนก่อน +192

    You haven't explained why the axiom of choice makes the sphere construction possible

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน +76

      It makes it possible to deconstruct the (measurable) ball into non measurable sets that, if reassembled into a (measurable) set, happen to have a different volume. I don't think explaining that would fit into a Ted video aimed at a general audience.

    • @נועםדוד-י8ד
      @נועםדוד-י8ד 6 หลายเดือนก่อน +19

      if you have no mathematical knowledge besides highschool, it would probably take you around a year of studies that are necessary to understand the proof

    • @arleyantes9321
      @arleyantes9321 6 หลายเดือนก่อน +23

      Yes, because the tiny fraction of the audience that would understand it would be all made of people who already understood it.
      I guess one of the goals here is to inspire people, in particular young people, to seek that kind of knowledge. But the technical parts of it require years of intense study, of course. Anyway, understand the basics of mathematics, as in what is an axiom and what is a theorem, is much more accessible and was indeed covered here.

    • @Jose_Hunters_EWF_Remixes
      @Jose_Hunters_EWF_Remixes 6 หลายเดือนก่อน +2

      ​@@julianbruns7459 By measurable, you mean in the Lebesgue integration sense?
      Dear lord, that was my waterloo
      This from a person whose area of expertise is the pinnacle of an introductory graduate level course in abstract algebra
      Namely Galois Theory

    • @Jose_Hunters_EWF_Remixes
      @Jose_Hunters_EWF_Remixes 6 หลายเดือนก่อน

      ​@@נועםדוד-י8ד I'll postulate that it would take anyone - under those condition - a heck of a lot longer
      Unless they were extremely gifted in math
      In which case, they'd have known that already and therefore have much more than a basic understanding

  • @jolness1
    @jolness1 6 หลายเดือนก่อน +80

    I’ve always loved that futurama references this with the professor’s duplicator machine in the episode where there are infinite benders.

  • @pulkitjain8366
    @pulkitjain8366 6 หลายเดือนก่อน +189

    Giving an alien you've just met an infinitely sharp knife might not be the smartest idea

    • @VVerVVurm
      @VVerVVurm 6 หลายเดือนก่อน +2

      I was thinking the same ..

    • @thealterego1777
      @thealterego1777 5 หลายเดือนก่อน +1

      Giving A.I the tools and compute required to run the whole world's economy is undoubtedly a good idea according to industry leaders

  • @nadiasalsabila34
    @nadiasalsabila34 6 หลายเดือนก่อน +237

    Nope. I don't understand. Have a nice day

    • @stephenj9470
      @stephenj9470 6 หลายเดือนก่อน +14

      Yeah, this was a very poorly designed Ted Ed video. Usually more practical examples in other Ted Ed videos.

    • @aditisk99
      @aditisk99 6 หลายเดือนก่อน +6

      ​@@stephenj9470 Or maybe we were not on a level of understanding 👀

    • @AshikurRahmanRifat
      @AshikurRahmanRifat 6 หลายเดือนก่อน

      This is to advanced

    • @sackeshi
      @sackeshi 6 หลายเดือนก่อน +4

      The Banach Tarski paradox is that its theoretically possible for there to be an infinite number of options and the same option to be picked every time. If you have a bag of M&Ms and put each M&M into a different box in a room with infinity number of boxes its theoretically possible for an all knowing being to choose those same M&Ms each time.

    • @danielsoro7295
      @danielsoro7295 6 หลายเดือนก่อน +1

      ​@@sackeshiIs an all knowing being possible though?

  • @danielcrafter9349
    @danielcrafter9349 6 หลายเดือนก่อน +59

    What's an anagram of Banach-Tarksi?
    Banach-Tarski Banach-Tarski

  • @jameslongstaff2762
    @jameslongstaff2762 6 หลายเดือนก่อน +9

    I studied math in college and you guys explained the axiom of choice so clearly that I learned something new

  • @SathwikKesappragada
    @SathwikKesappragada 6 หลายเดือนก่อน +2

    I loved this video! Animations are always on point. Learning about axioms in college was so complicated, but you guys made it so easy to digest.

  • @ianbo1
    @ianbo1 6 หลายเดือนก่อน +6

    the animation is ON POINT. beautifully done

  • @Moomoo0013
    @Moomoo0013 6 หลายเดือนก่อน +3

    Wait, I actually was able to follow through with this! Basically, math itself is pretty abstract but it becomes concrete once we apply it in a practical situation (a.k.a. reality). And there are alot of alternate "truths", I guess, that would lead to different realities. Cool stuff.

  • @mynamesak
    @mynamesak 6 หลายเดือนก่อน +3

    One of my favourite videos to date, loved the animation as well as the analogies used!

  • @DiemetaMarfire-nm7xl
    @DiemetaMarfire-nm7xl 6 หลายเดือนก่อน +12

    Ted ed finally doing a video on this, nice🔥🔥

  • @tharagleb
    @tharagleb 6 หลายเดือนก่อน +42

    Not an infinite number (at 0:15), a finite number. From Wik: "Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original ball. "

    • @Robertganca
      @Robertganca 6 หลายเดือนก่อน +3

      If it’s finite, then how are you able to recreate the ball twice with the same diameter and density? Or do those change?

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน +18

      The point is that those finite decompositions require an uncountable number of choices, so you first need to have an infinite amount of sets to chose the points from. The decompositions are still finite though.

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน +2

      ​@@Robertgancadiameter and density don't change. (I don't think something like density exists in this context, its either solid or its not. In this case the starting ball and the ending balls are all solid)

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน +6

      ​@@GuzMat-matematicas a single point has measure 0, you won't increase the measure of the ball by rotating and reassembling sets of measure 0. You need non measurable sets for this which the axiom of choice implies the existence of.

    • @e-dragon4691
      @e-dragon4691 6 หลายเดือนก่อน +7

      ​@@Robertganca
      That's a good question, because this paradox questions our understanding of volume and density.
      The problem here is that the axiom of choice allows you to contruct sets, where assigning any value as "volume" to it would result in a contradiction.
      In measure theory we call these sets non-measurable sets and by allowing the axiom of choice, we have to accept them.
      The trick in Banach Tarski's paradox is to split the ball into unmeasurable sets in order to circumvent any volume restrictions.

  • @henriquecardoso45
    @henriquecardoso45 6 หลายเดือนก่อน +7

    TED-Ed math videos are always impeccable. There's a great ending quote on Spivak's Calculus from Jonathan Swift, when he lays the definitions of the reals:
    There was a most ingenious Architect
    who had contrived a new Method
    for building Houses,
    by beginning at the Roof, and working
    downwards to the Foundation.

  • @anzaklaynimation
    @anzaklaynimation 6 หลายเดือนก่อน +31

    Michael had already done a great job in explaining this Paradox.

    • @canyoupoop
      @canyoupoop 6 หลายเดือนก่อน +10

      This is like a trailer for that 22min abomination

    • @Nyramyss-jj8mj
      @Nyramyss-jj8mj 6 หลายเดือนก่อน +2

      Well it turns out this video isn't really about the paradox, but makes a bigger point about its implications for the bases of mathematics

  • @xiaohuwang4173
    @xiaohuwang4173 6 หลายเดือนก่อน +10

    Let's not forget during the Banach-Tarski construction, the pieces the ball is cut into are in fact non-measurable, meaning there's no consistent way to assign a volume to each of them, making it even less realistic

    • @crazysasha1374
      @crazysasha1374 6 หลายเดือนก่อน +3

      I think that's kinda key, right? It's missing an axiom we use to model reality as we perveive it, right?

    • @henrysmith9484
      @henrysmith9484 5 หลายเดือนก่อน +1

      Yea that's the real problem. If you use pointless topology than such pathological result will not exist

  • @violetfan1777
    @violetfan1777 6 หลายเดือนก่อน +30

    I think it's better to go read some academic paper that explains what Banach-Tarski really is than watching this video that tried but failed to simplify this whole thing.

    • @jovi_skips
      @jovi_skips หลายเดือนก่อน

      What can you say about the vsauce video about this paradox?

  • @kabirsingh4155
    @kabirsingh4155 6 หลายเดือนก่อน +2

    As a lover of mathematics this video is really amazing great job

  • @mimumi3723
    @mimumi3723 6 หลายเดือนก่อน +1

    Can't find anyone talking the animation here, I think it makes the video much easier to comprehend!

  • @sophiewu2928
    @sophiewu2928 6 หลายเดือนก่อน

    the most beautiful thing about math to me is how well we've learned to talk about imaginary things with other people - this video boils this down and does it in an accessible and fun way too :) bravo to the makers!

  • @grapeshott
    @grapeshott 6 หลายเดือนก่อน +18

    Couldnt understand

  • @SciMinute
    @SciMinute 6 หลายเดือนก่อน +4

    I only heard the name of this Banach-Tarski paradox and didn't really know what it was, but the animation definitely helped me understand what it was! 👍

  • @aaaaaaaaa79318
    @aaaaaaaaa79318 6 หลายเดือนก่อน

    We learned this in my really analysis class about a month ago!

  • @jenigeorge7458
    @jenigeorge7458 2 หลายเดือนก่อน

    Quite an intriguing concept!

  • @Robertganca
    @Robertganca 6 หลายเดือนก่อน +6

    This reminds me of Non-Euclidean video games like Antichamber and Superliminal.

  • @jdmarino
    @jdmarino 6 หลายเดือนก่อน

    The graphics of this episode are excellent, particularly the math houses with differing foundations.

  • @duran9664
    @duran9664 6 หลายเดือนก่อน +2

    Damn!
    YOU ARE PERFECT in making simple paradox more complicated 😒

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน +10

      If you find this explanation complicated, how can you find the actual paradox simple?

  • @vedantmungre1702
    @vedantmungre1702 6 หลายเดือนก่อน +2

    I wanted a video on this topic for a long time. You guys reading my minds! 😭 Maths hasn't reached a perfect stage *yet* .

  • @joanhoffman3702
    @joanhoffman3702 6 หลายเดือนก่อน

    I was following along, then I got lost partway through. It’s a good thing I understand the math needed for everyday life! Not that I was terrible at math in school, it’s just not something I need day to day.

  • @oscarvasquez706
    @oscarvasquez706 6 หลายเดือนก่อน +14

    Flaws? Yes, it's not always fun to learn it.

  • @dagordon1
    @dagordon1 6 หลายเดือนก่อน

    The catch with this and with Gödel is that a copy (or an infinite number of copies) is being made from the infinite

  • @GhostOfRazgiz
    @GhostOfRazgiz 6 หลายเดือนก่อน +1

    One of my biggest math questions is about the order of operations. In my mother's time in school, all math was answered in the order it was written.
    For example; 1+2×3 would be 9.
    But when I was in school, we worked off BEDMAS. Using BEDMAS, the same question; 1+2×3 would end up with the answer being 7.
    How could the fundamental nature of math change in half a century and not throw the world into chaos?

    • @srizanchowdhury
      @srizanchowdhury 6 หลายเดือนก่อน +1

      No, I think, the problem with the order of operations is caused by our teachers not being careful and fully informed. Besides, to make sure there is no ambiguity, we can use parenthesis and never skip a "x" when we imply multiplication. Take up a programming language and you will see how easy and clear the operations are.

    • @mattharper9602
      @mattharper9602 6 หลายเดือนก่อน +2

      My interpretation is that underlying fundamental maths hasn’t changed, only the notation that’s used. As long as you have agreed the notation (e.g. order of operations, symbols, or base numbers) with the person you are communicating with, no problem is caused.

  • @azoshin
    @azoshin 6 หลายเดือนก่อน

    The Axiom of Choice(AC) can be substituted by the Axiom of Determinacy(AD).

  • @iluvheechuu
    @iluvheechuu 6 หลายเดือนก่อน +2

    It makes me wonder if the axioms we choose can get closer to supporting all math, or is it actually just building different interesting homes. is one set of axioms "better" than the other or just simply different? I think it would be a great idea if we link back to ted's video on godel and "is math created or discovered?"

    • @yorgoskontoyiannis6570
      @yorgoskontoyiannis6570 5 หลายเดือนก่อน

      That's a great question! Unfortunately there's no axioms you could choose which would support "all" of mathematics. For example, whatever collection of axioms you choose, there are always theorems you can't prove using those axioms--you can never "have enough", so to speak. Some collections of axioms are "stronger" than others, in the sense that everything you could build on one you could build on the other, but none are better, just different :)

  • @Demetrius900000
    @Demetrius900000 6 หลายเดือนก่อน

    Axiom of Choice sounds like a powerful spirit!

  • @abdullahfaisal7749
    @abdullahfaisal7749 6 หลายเดือนก่อน

    Beautifully done

  • @Otis151
    @Otis151 6 หลายเดือนก่อน +3

    Could we refine the AoC so that it’s usable in the sensical applications while not applicable in known non-sensical?

    • @hiredfiredtired
      @hiredfiredtired 6 หลายเดือนก่อน

      theres no such thing as "sensical applications". Axiom of choice naturally leads to these things.

    • @Otis151
      @Otis151 6 หลายเดือนก่อน +1

      @@hiredfiredtired I defer to you, as I am not a math person.
      Still Euclid’s axiom was found not to be needed in certain situations. Perhaps AoC is similar?
      But I think I see what you’re saying. AoC is perfect and just because a paradoxical result is unintuitive doesn’t mean it’s wrong?

    • @hiredfiredtired
      @hiredfiredtired 6 หลายเดือนก่อน +2

      @@Otis151 My point is that you are stuck between having banac taramy and well ordering, and NOT having the fact that you can pick an item from a collection of nonempty sets. The finite axiom of choice is actually provable without axiom of choice, axiom of choice is really just for infinities. Thats why theres so many weird results from it

    • @Octa9on
      @Octa9on 6 หลายเดือนก่อน +1

      ​​​​​@@Otis151I'm just an interested layman here but my understanding is that, without the axiom of choice, there are important (to us) mathematical questions that don't have an answer; so we can either just give up on those questions, or accept the sometimes bizarre answers that using the axiom gives us.
      there are weaker axioms that can be chosen in place of the axiom of choice, but as far as I'm aware no one's found a way to get the answers without the weirdness.
      the vast majority of mathematicians just accept the axiom of choice and its consequences and get on with their work

    • @yorgoskontoyiannis6570
      @yorgoskontoyiannis6570 5 หลายเดือนก่อน +2

      Great question! In a way the axiom of choice is very strong: it can be used to prove a lot of theorems, some weird, some non-weird. Your question essentially is, "can the axiom of choice be weakened to produce fewer weird results while preserving the non-weird ones?" Unfortunately the answer is, essentially, no; or at least, we haven't found such a weakening.
      The most popular weakening is called the "Axiom of Dependent Choice" (DC). Taking DC instead of AC avoids a lot of weirdness: Banach-Tarski cannot be proved using DC (more generally, DC cannot be used to show the existence of non-measurable sets). And lots of good math can be done with just DC (most of real analysis, so most of calculus, for examples). But some really important theorems cannot be proved using just DC. In functional analysis, the Hahn-Banach and many other theorems require AC and not DC, and in measure theory many fundamental theorems (even the sigma-additivity of the Lebesgue measure!) cannot be shown using DC. So you avoid lots of weirdness but you also loose lots of important theorems.

  • @MegaBubbles360
    @MegaBubbles360 6 หลายเดือนก่อน

    excellent explanation and presentation!

  • @gobindasarangi7169
    @gobindasarangi7169 6 หลายเดือนก่อน

    Great video, thanks

  • @eshelsh1905
    @eshelsh1905 6 หลายเดือนก่อน +2

    Great video, but your explanation for the axiom of choice (2:20) was rather unclear - I’m already familiar with the aoc and still got lost in the metaphor.
    It might have been better to explain what the axiom actually is, before saying when a choice is valid and telling the story about the omniscient chooser.

  • @zeearrgunn
    @zeearrgunn 6 หลายเดือนก่อน

    A "cameo" from Heptapods "Flapper" or "Raspberry" at the end would've been an amazingly apt reference.

  • @zach11241
    @zach11241 6 หลายเดือนก่อน +11

    The flaw is that I can’t do math

  • @LelekPLN
    @LelekPLN 6 หลายเดือนก่อน +3

    It's a similar concept to Hilbert paradox

    • @dogedev1337
      @dogedev1337 6 หลายเดือนก่อน +5

      Not really, the main point of this paradox is to show that there is no consistent way to assign a measure (i.e. volume) to every possible subset of three dimensional space, because otherwise you can transform a ball into two balls of the same size through seemingly volume-preserving transformations. Hilberts paradox is not really a paradox as it simply shows a few (unintuitive) differences between finite and infinite sets

    • @shubhamjat6926
      @shubhamjat6926 6 หลายเดือนก่อน

      ​@@dogedev1337Thanks you explained it beautifully

  • @TLguitar
    @TLguitar 6 หลายเดือนก่อน +1

    Because math is a man-made tool rather than a natural science, it can contain such examples that likely have no parallel in the physical world.
    To my understanding this paradox stems down to being able to break down a set of values (i.e. ones that represent a sphere) into an infinite series of an infinitely-high resolution.
    The unobservable universe may very well be infinite, but applied physical situations within our observable reality don't seem to be infinite. If a physical sphere is made of a finite number of subatomic particles, and space as well may be of a finite resolution, we can't section a physical one an infinite number of times to make use of the mathematical phenomenon which is ∞=∞-1=∞-2...
    Point being, this paradox breaks our brain because it applies to a mathematical sphere values that don't exist in a physical sphere.

  • @godmisfortunatechild
    @godmisfortunatechild 6 หลายเดือนก่อน

    How about a video on the strength/weakenss of logic amd rules of inference.

  • @anuragmahawar9289
    @anuragmahawar9289 6 หลายเดือนก่อน

    You had me at 'Maths' Ted-ed. Love your videoes on maths.

  • @croftmire
    @croftmire 5 หลายเดือนก่อน

    Great video, didn’t understand any of it.

  • @gustavocarvalholoboleite3526
    @gustavocarvalholoboleite3526 6 หลายเดือนก่อน +9

    Hey Ted -ed sugestion make a video about the 1992 riots of Los Angeles.

    • @blazer9547
      @blazer9547 6 หลายเดือนก่อน +3

      That goes against axiom of greatness of multiculturalism

    • @kirbya9545
      @kirbya9545 6 หลายเดือนก่อน

      @@blazer9547the one axiom that still remains even where there is proof that says otherwise 😂

  • @Passion84GodAlways
    @Passion84GodAlways 6 หลายเดือนก่อน

    Fascinating! Thank you!

  • @alishiri8820
    @alishiri8820 6 หลายเดือนก่อน +1

    I watched two different videos several times, I'll finally get it

  • @planktonfun1
    @planktonfun1 6 หลายเดือนก่อน +2

    its usually is a rounding error

  • @vignesh-nandakumar
    @vignesh-nandakumar 6 หลายเดือนก่อน

    I'm not smart enough to understand this but give the animation team a raise they did an amazing job

  • @farzad1021
    @farzad1021 6 หลายเดือนก่อน

    Consider a hypothetical scenario, that in our universe we get a new law that if we take 2 and more 2 object and then add them then they will collapse and turn into 0. Now in this case will you say 2+2=0 just because we are seeing in the universe when 2 and 2 objects get add they collapse and turn into 0? Or you will say 2+2=4 because of logical consistency?

    • @לוטם-ו1ע
      @לוטם-ו1ע 6 หลายเดือนก่อน

      We wouldn't change the way + behaves, but we would make a new operation that is consistent with the new behavior of objects in our universe. So maybe 2#2=0

    • @MuffinsAPlenty
      @MuffinsAPlenty 6 หลายเดือนก่อน

      @@לוטם-ו1ע mod 4 arithmetic still uses a + sign.

  • @michaelowino228
    @michaelowino228 6 หลายเดือนก่อน +1

    Good video.

  • @samshort365
    @samshort365 6 หลายเดือนก่อน

    Zeno's paradox tells us that if we take steps towards a door way such that each consecutive step is half that of the previous step, them we will never reach our destination. In reality we do due to convergence. In reality measurement is limited as shown by Heisenberg's uncertainty principle and paradoxes arise when we try to use "common" logic with infinities. They do not work because infinity is a concept, not a number and is therefore immeasurable AND it does not fulfil the axioms of real numbers.

    • @julianbruns7459
      @julianbruns7459 5 หลายเดือนก่อน

      It appears that you lack knowledge of what you are trying to talk about. An example of a measure that is talked about here is the lebesgue-measure. It is indeed possible to measure infinite sets, just not all of them (unless you use the zero-measure) if you assume the axiom of choice.

    • @samshort365
      @samshort365 5 หลายเดือนก่อน

      @@julianbruns7459 You are absolutely right, I'm not a mathematician. However, semantics of "infinity" and "immeasurable" aside, I was referring to the application of the axioms of real numbers to infinity. I didn't mention lebesgue-measures, nor infinite sets, nor did I invoke the axiom of choice. Nevertheless, I stand by your greater wisdom.

    • @julianbruns7459
      @julianbruns7459 5 หลายเดือนก่อน

      @@samshort365 oh okay. I was merely assuming that because i thought your comment was related to the video/the banach tarski paradox. If your message was that you can't treat infinity as a real number and have to be careful when talking about it, i completely agree. Our intuition often fails when carelessly talking about infinity.

  • @megamind_2222
    @megamind_2222 หลายเดือนก่อน

    I am in season 3 of this video and it's tough but I think I'll eventually understand.

  • @muhammadfaizanalibutt4602
    @muhammadfaizanalibutt4602 6 หลายเดือนก่อน

    So different axioms lead to different results. How do we define these axioms?

  • @kanedafx
    @kanedafx 6 หลายเดือนก่อน

    Yea I most DEFINITELY understood that.

  • @Abmebbma
    @Abmebbma 6 หลายเดือนก่อน

    Thanks Ted. This was actually quite beautiful

  • @RichardHannay
    @RichardHannay 6 หลายเดือนก่อน

    This flew over my head

  • @skymore2948
    @skymore2948 5 หลายเดือนก่อน

    The Banach Tarski paradox, will complete me.
    🔄❤

  • @sourabhjogalekar3842
    @sourabhjogalekar3842 6 หลายเดือนก่อน

    Babe wake up..Ted-Ed just dropped another banger

  • @broncokonco
    @broncokonco 5 หลายเดือนก่อน

    Wouldn’t the Heisenberg Uncertainty Principle make the Axiom of Choice illogical for analyzing physical geometry? Particularly when dealing with infinitely small pieces.

    • @julianbruns7459
      @julianbruns7459 5 หลายเดือนก่อน

      The fact that we can't know precisely the position and momentum of elementary particles is not relevant here i think. (Also i don't think quantum mechanics assumes infinitely small pieces).
      Most people would agree that the number of elementary particles in a given sphere is finite (or at most countably infinite). Even if you interpret those particles as sets, the banach tarski paradox doesn't apply, because the axiom of choice needs an uncountably infinite amount of points to create this effect.

    • @NLGeebee
      @NLGeebee 5 หลายเดือนก่อน

      Heisenberg is physics, BT is maths. You’re in the clear :)

  • @plat6164
    @plat6164 6 หลายเดือนก่อน

    I love this so much! My brain feels expanded

  • @Erazmutas
    @Erazmutas 6 หลายเดือนก่อน +1

    Love these vids, keep it up :)

  • @sophiaisabelle01
    @sophiaisabelle01 6 หลายเดือนก่อน

    Math is supposed to be abstract. One thing that strikes people about it is that it can never be completely understood. Even when you look at it in a different angle, there's still some areas that need analysis on. Equations are anything but perfect. People spend years just looking for the 'correct' answers when they probably aren't the best answers.

  • @MichaelDarrow-tr1mn
    @MichaelDarrow-tr1mn 6 หลายเดือนก่อน +1

    AoC is necessary for proving that if two sets aren't the same size, one of them is bigger

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน

      Your language is confusing. What do you mean by "size"? Do you mean cardinality? In that case it is false, since both the integers and natural numbers have the same cardinality. Do you mean lebesgue measure? Then this is trivially not true.
      Are you referring to the generalized continuum hypothesis? Then the Axiom of Choice isn't necessary for proving it, in fact it is the exact opposite: ZF+ GCH implies AoC. Do you mean Cantors theorem, that the power set of a set has larger cardinality than that set? Then your communication would have been pretty poorly.
      Could you please elaborate what you mean?

    • @MichaelDarrow-tr1mn
      @MichaelDarrow-tr1mn 6 หลายเดือนก่อน +1

      @@julianbruns7459 i mean cardinality
      in both the "bigger" part and the "size" part.

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน

      ​@@MichaelDarrow-tr1mn then this seems more like a tautology that you don't need the axiom of choice for, just the definition of an order.

    • @MichaelDarrow-tr1mn
      @MichaelDarrow-tr1mn 6 หลายเดือนก่อน

      @@julianbruns7459 pretty sure it's actually equivalent to the axiom of choice

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน

      @@MichaelDarrow-tr1mn would you be so kind and give me a source for that claim?

  • @priyankaagrawal2321
    @priyankaagrawal2321 6 หลายเดือนก่อน +1

    Very nice video

  • @NLGeebee
    @NLGeebee 5 หลายเดือนก่อน

    So by following the BT-paradox, you could slice the people who onderstand the BT-paradox into infinitely many pieces and construct twice that many people.

  • @peggyharris3815
    @peggyharris3815 6 หลายเดือนก่อน +4

    I will not be handing an alien a sharp knife.

  • @lacrartezorok4975
    @lacrartezorok4975 6 หลายเดือนก่อน

    I learned basic math with apples and oranges, and of course I understand irrational numbers, but if the elements and variants have to be ordeal and not existing, then how can I know what you say is correct?

  • @anushasundhar5528
    @anushasundhar5528 6 หลายเดือนก่อน

    When I saw the name Bancah-Tarski i immediately thought of the riddle ted ed did.The infinite gold riddle Where the name was in front of the little mans shirt.

  • @aoay
    @aoay 6 หลายเดือนก่อน

    Until we discover how our universe can support...
    - Infinitely sharp knives,
    - Infinitely divisible balls, and
    - Processes for being able to complete infinite numbers of actions in a finite amount of time...
    surely this is all moot?
    If we can accept the existence of, say, the square root of -1 (which we can manipulate mathematically but not manifest physically) then why should this be any different?

  • @JoshRendall
    @JoshRendall 6 หลายเดือนก่อน +1

    Banach-Tarski? Like the Banach-Tarski from the Infinite Gold riddle?

    • @thenovicenovelist
      @thenovicenovelist 6 หลายเดือนก่อน

      That's what came to my mind as well.

    • @JoshRendall
      @JoshRendall 6 หลายเดือนก่อน

      @@thenovicenovelist Really?

    • @Gordy-io8sb
      @Gordy-io8sb 6 หลายเดือนก่อน

      The Banach-Tarski paradox in set theory.

  • @SteveThePster
    @SteveThePster 5 หลายเดือนก่อน

    The B-T paradox is not so controversial. The set of points in the unit sphere is unaccountably infinite - effectively the same number (cardinality) of points as two times the unit sphere. So no reason why you shouldn't be able to create two from one.
    After all it's not hard to create a function mapping the integers to the seemingly much larger set that is all the rational numbers. Why is this any different?

  • @Jose_Hunters_EWF_Remixes
    @Jose_Hunters_EWF_Remixes 6 หลายเดือนก่อน

    140K views, and only 279 comments?
    That's stunning
    Yeah, so I'm a mathematician
    And I already have a complaint
    At 1:27, the soulless voice says
    _that adding zero to a number has no effect is an axiom_
    Which it denotes by
    *_x + 0 = x_*
    I suppose it's possible to assert that this is an axiom
    But a much better formulation is that this is the _definition of _*_zero_*_ in an algebra system_
    Where the binary operation in this algebraic system is *addition* commonly represented by the symbol *+*

  • @Wulk
    @Wulk 5 หลายเดือนก่อน

    The only thing I could get was that Crocker was right 2+2 might be equal to 🐟 after all

  • @attenonmj3708
    @attenonmj3708 6 หลายเดือนก่อน +1

    0:02 - And then there is me who doesn't know what an analogy is... And I was the best at math in my school...

  • @ayugitabhagawanti5095
    @ayugitabhagawanti5095 5 หลายเดือนก่อน

    This is exactly why I LOVE SCIENCE 😭

  • @evanlucas8914
    @evanlucas8914 6 หลายเดือนก่อน

    Sometimes you can follow all the rules and come to an unexpected result. This is like California declaring the bee a fish because it meets all the criteria. No it's not actually a fish but according to the rules we established it is legally a fish.
    The same goes for this. It's not technically possible in reality (as far as we know), however according to the rules we have established it's possible.

    • @RaoBlackWellizedArman
      @RaoBlackWellizedArman 6 หลายเดือนก่อน

      Well in our universe it is not possible. In another one it may be. And no, this isn't sci-fi. 😂

  • @xanschneider
    @xanschneider 6 หลายเดือนก่อน +1

    Did you get any of that?

  • @lorenzobolis5166
    @lorenzobolis5166 6 หลายเดือนก่อน +2

    We stan the axiom of choice

  • @itisALWAYSR.A.
    @itisALWAYSR.A. 6 หลายเดือนก่อน +1

    Whilst I appreciate the message at the end about axioms being potentially non-universal, please could we not give our infinitely-sharp knife to an alien

  • @whatisdis
    @whatisdis 6 หลายเดือนก่อน

    Not sure if right, but I think I came up with a version of Banach-Tarski Paradox of my own.
    Take a series of whole numbers from 1 to infinity. Now take all the odd numbers in the series and add it up. You'll find that the total is infinity. Now do the same with even numbers. Add all the even numbers up and you'll get infinity too.
    In the end you get two infinities from one infinity. Which doesn't seem right considering the odd version of infinity doesn't have all the whole numbers yet it still totals to infinity.

    • @julianbruns7459
      @julianbruns7459 6 หลายเดือนก่อน +1

      The size of a set in the sense you are talking about is defined using the concept of cardinality: if there is a bijection between two sets , they are said to have equal cardinality. The set of even numbers has the same cardinality as the set of natural numbers. Likewise, there even exists a bijection between the sets of prime numbers and the set of rational numbers. The set of real numbers is larger in the sense that there is no bijection between it and the naturals, the reals are also called an uncountable set.
      The kind of measure the video is talking about is different. It assigns an infinite set of points a finite value. For example the interval [0,1] wich has an uncountable number of points gets assigned the value 1.
      The point of the banach-tarski paradox is that some sets can't get a value assigned in this sense and thus rotating and reassembling a ball into those sets enables you to "double the ball" in a specific way.

  • @orzhovthief
    @orzhovthief 4 หลายเดือนก่อน

    This could just explain why unification of quantum theory and standard model is stuck. Historically, about every time something has been kept for its practicality over accuracy has been proven a terrible mistake

  • @JupritianArt
    @JupritianArt 6 หลายเดือนก่อน +1

    So that’s where the little man from the Infinite Coin Riddle got his name. Very interesting.

  • @aparnasharma6558
    @aparnasharma6558 6 หลายเดือนก่อน

    The mysterious omniscient chooser, as a mathematician, I can't stop laughing; this analogy was too good.

  • @sourabhjogalekar3842
    @sourabhjogalekar3842 6 หลายเดือนก่อน

    The animations are so good that they are distracting from the actual narration. had to watch twice.

  • @captaincube8455
    @captaincube8455 6 หลายเดือนก่อน

    So basically the paradox in simple terms is ((1/infinite)x(infinite))=2?

    • @julianbruns7459
      @julianbruns7459 5 หลายเดือนก่อน

      No, i don't think you can simplify it like that without making it plain wrong. If you really want to put it into one sentence, maybe say something like: "the axiom of choice implies the existence of non-measurable sets".

  • @mujtabarehman5255
    @mujtabarehman5255 6 หลายเดือนก่อน +1

    No matter what axioms you choose, there will always be true statements that you will be unable to prove.

    • @stefanperko
      @stefanperko 6 หลายเดือนก่อน +1

      Almost! Its true if your axioms are strong enough for a portion of standard arithmetic. For weaker axiom systems it can be different.

    • @mujtabarehman5255
      @mujtabarehman5255 6 หลายเดือนก่อน

      @@stefanperko That sounds familiar, but makes no sense to me. I’ve been out of school for too long lol

    • @julianbruns7459
      @julianbruns7459 5 หลายเดือนก่อน

      Your axiom system needs to be consitent, otherwise every theorem can be proven by the principle of explosion, and thus also every "true" statement. Your axioms also need to be recursively enumerable, for example i think "true arithmetic" trivially proves all true statements in arithmetic but is not recursively enumerable. The axiom system also needs to be able to interpret a certain amount of arithmetic for the proof to work, for example this doesn't apply to presburger arithmetic wich is decidable.
      Lastly, it is hard to define what make a sentence "true", so it is better to say that a formal system with the said requirements isn't negation complete, i.e. there are sentences A where it can neither proof A nor the negation of A. Usually we would want at least one of them to have the name "true", which is where your formulation comes from. We don't construct a sentence that we show is true without proving it though.

  • @princefresh7588
    @princefresh7588 6 หลายเดือนก่อน

    me before watching the video - what is Banach-Tarski paradox ?🤥
    me after watching the video - what is Banach-Tarski paradox ?🤥

  • @kennethvalbjoern
    @kennethvalbjoern 6 หลายเดือนก่อน +1

    Math without the axiom of choice? No thanks, it's way too important. The equivalent Zorn's lemma is the indispensable tool in the Swiss army knife of math. Take the Hahn-Banach theorem as an example, there would almost be no functional analysis whithout it.

  • @zeroone7500
    @zeroone7500 6 หลายเดือนก่อน

    So, at last, in this video what the heck is axiom of choice? Why they just mentioned but didn't explain about it?

    • @zmaj12321
      @zmaj12321 6 หลายเดือนก่อน

      They did explain it, using the "marbles in boxes" metaphor.

  • @aditisk99
    @aditisk99 6 หลายเดือนก่อน

    Ahhhh high school math class flashbacks. Didn't understand much and I zoned out.

  • @babybean9796
    @babybean9796 6 หลายเดือนก่อน +1

    I swear mathematicians just enjoy making confusing problems that dont really make sense 😭

  • @TokuHer0
    @TokuHer0 6 หลายเดือนก่อน

    Oh... NOW I understand the Strangle Little Man with the bag that makes infinite coins