^= read as to the power *=read as square root As per question 5^(sin^24x)- 5^(cos^24x)=4 5^(sin^24x)-5^(1-sin^24x)=4 5^sin^24x - {5/(5^sin^24x)}=4 Let 5^sin^24x=R So, R-(5/R)=4 (R^2-5)/R=4 R^2-5=4R R^2-4R-5=0 R^2-5R+R-5=0 R(R-5)+1(R-5)=0 (R-5)(R+1)=0 R-5=0, or R+1=0 R=5 or R=(-1) If R=5 5^(sin^24x)=5 5^(sin^24x)=5^1 Sin^24x=1 Sin4x=*1=1 Sin4x=sin90 4x=90 X=90/4=22.5 degree
^= read as to the power
*=read as square root
As per question
5^(sin^24x)- 5^(cos^24x)=4
5^(sin^24x)-5^(1-sin^24x)=4
5^sin^24x - {5/(5^sin^24x)}=4
Let 5^sin^24x=R
So,
R-(5/R)=4
(R^2-5)/R=4
R^2-5=4R
R^2-4R-5=0
R^2-5R+R-5=0
R(R-5)+1(R-5)=0
(R-5)(R+1)=0
R-5=0, or R+1=0
R=5 or R=(-1)
If R=5
5^(sin^24x)=5
5^(sin^24x)=5^1
Sin^24x=1
Sin4x=*1=1
Sin4x=sin90
4x=90
X=90/4=22.5 degree