Oxford University Admission Interview Tricks | ✍️🖋️📘💙

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ม.ค. 2025

ความคิดเห็น • 3

  • @payoo_2674
    @payoo_2674 20 ชั่วโมงที่ผ่านมา

    a⁴=-64
    Let a=x+yi {x,y∈R}
    (x+yi)⁴=-64
    x⁴+4x³yi-6x²y²-4xy³i+y⁴=-64+0i
    Comparing the real and imaginary parts of both sides of the equation
    x⁴-6x²y²+y⁴=-64 ①
    and
    4x³y-4xy³=0
    4xy(x²-y²)=0
    4xy(x-y)(x+y)=0 => 4 cases
    case 1: x=0 (rejected: from ① y⁴=-64, but y∈R)
    case 2: y=0 (rejected: from ① x⁴=-64, but x∈R)
    case 3: x-y=0 => x=y =>
    from ①: -4y⁴=-64 => y⁴=16 => y=±⁴√16=±2 (complex roots rejected, b/c b∈R)
    if y=2 ==> x=2 => a₁=2+2i
    if y=-2 ==> x=-2 => a₂=-2-2i
    case 4: x+y=0 => x=-y =>
    from ①: -4y⁴=-64 => y⁴=16 => y=±⁴√16=±2 (complex roots rejected, b/c b∈R)
    if y=2 ==> x=-2 => a₃=-2+2i
    if y=-2 ==> x=2 => a₄=2-2i

  • @wes9627
    @wes9627 วันที่ผ่านมา

    x^4=(2^6)(-1)=(2^6)e^{i2jπ}e^{iπ+i2jπ}=(2^6)e^{iπ+i2jπ}, j any integer and i=√(-1)
    x_j=(2^6)^{1/4}[e^{iπ+i2jπ}]^{1/4}=2^{3/2}e^{iπ/4+ijπ/2}=2^{3/2}[cos(π/4+jπ/2)+i*sin(π/4+jπ/2)],j=0,1,2,3
    x_0=2√2(√2/2+i*√2/2)=2+2i, x_1=-2+2i, x_2=-2-2i, and x_3=2-2i.
    That is, the four roots are equally spaced on a circle of radius 2√2 centered on the origin of the complex plane.

  • @payoo_2674
    @payoo_2674 20 ชั่วโมงที่ผ่านมา

    a⁴=-64
    a⁴+64=0
    (a²)²-(8i)²=0
    (a²-8i)(a²+8i)=0
    (a²-(2√2√i)²)(a²-(2√2i√i)²)=0 but √i=1/√2+i/√2 (principal root)
    (a-2√2(1/√2+i/√2))(a+2√2(1/√2+i/√2))(a-2√2i(1/√2+i/√2))(a+2√2i(1/√2+i/√2))=0
    (a-2-2i)(a+2+2i)(a+2-2i)(a-2+2i)=0
    so
    a₁=2+2i
    a₂=-2-2i
    a₃=-2+2i
    a₄=2-2i