One from Hong Kong.

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ม.ค. 2025

ความคิดเห็น • 131

  • @vittorio1159
    @vittorio1159 4 ปีที่แล้ว +130

    gcd(p-1,q)>1 has infinite solutions!!!

    • @MichaelPennMath
      @MichaelPennMath  4 ปีที่แล้ว +58

      This is correct! How can we fix this step?

    • @karlpaulparmakson6917
      @karlpaulparmakson6917 4 ปีที่แล้ว +95

      This can be observed from symmetry. We only find new solutions if p divides 7^q-2^q and q divides 7^p-2^p. If either gcd(p-1,q)=1 or gcd(q-1,p)=1, then we find the solutions as shown, if both gcd's are>1, we get gcd(p-1,q)=q (since q is prime), hence p>q, but from the symmetric argument q>p, hence contradiction.

    • @chongweifongchongweifong7180
      @chongweifongchongweifong7180 4 ปีที่แล้ว +5

      @@karlpaulparmakson6917 very good explanation!

    • @advaithnair8152
      @advaithnair8152 4 ปีที่แล้ว +3

      @@karlpaulparmakson6917 thank you sir

    • @pikupal8996
      @pikupal8996 4 ปีที่แล้ว +3

      So conclusion that I draw for the case p|(7^q-2^q):
      p=2,7 are not solutions .
      1st case:2

  • @goodplacetostop2973
    @goodplacetostop2973 4 ปีที่แล้ว +35

    11:26 Happy Saturday everyone, have a great week-end!

    • @aril_archive6518
      @aril_archive6518 4 ปีที่แล้ว +2

      This is your 420th comment in this channel

    • @goodplacetostop2973
      @goodplacetostop2973 4 ปีที่แล้ว +4

      @@aril_archive6518 420 already? Oh I've never paid attention to that number! That's a meme milestone lol

  • @VibingMath
    @VibingMath 4 ปีที่แล้ว +11

    Greeting from Hong Kong. Love your channel!

  • @jackychanmaths
    @jackychanmaths 4 ปีที่แล้ว +19

    I'm from Hong Kong but I can't find this question in either 1999-2000 or 2000-2001 HKMO papers

    • @rathemis2927
      @rathemis2927 4 ปีที่แล้ว

      Could it be IMO preliminary?

  • @jamesyeung3286
    @jamesyeung3286 4 ปีที่แล้ว +21

    never even knew that we had a math Olympiad here, love from hk!

  • @wolffang21burgers
    @wolffang21burgers 4 ปีที่แล้ว +2

    Surely WLOG p 1 has infinite solutions).
    We find that p = 5. q in (5, 11, 61).
    Then we invoke symmetry about p

    • @digxx
      @digxx 3 ปีที่แล้ว +1

      One of the best answers without any thumbs up? Clear and concise without all that noise...

  • @kozokosa9289
    @kozokosa9289 4 ปีที่แล้ว +8

    To reach p=5 just use power rules, 7^n-2^n always ends up in a multiplicitive of 5.

    • @JM-us3fr
      @JM-us3fr 4 ปีที่แล้ว

      This reasoning might be backwards. Michael's case 1 was good because it assumes p divides 7^p-2^p, and arrives at the fact that p=5. That way when he does case 2, he can assume p divides 7^q-2^q

    • @kozokosa9289
      @kozokosa9289 4 ปีที่แล้ว

      @@angelmendez-rivera351 4 cases 7^(n+1)-2^(n+1) and so on, you always have a 5 at the end and it being that we're looking for primes means that we have a 5.7-2=5 9-4=5,3-8=-5, 1-6=-5

    • @kozokosa9289
      @kozokosa9289 4 ปีที่แล้ว

      @@angelmendez-rivera351 the 4 cases are calculated much quicker though

    • @kozokosa9289
      @kozokosa9289 4 ปีที่แล้ว

      @@angelmendez-rivera351 you know that every 4 natural numbers you end up with the same last digit, then it's an easy proof that it ends with a 5, making it divisible by 5.

    • @kozokosa9289
      @kozokosa9289 4 ปีที่แล้ว

      @@angelmendez-rivera351 it proves that 5 is necessarily an answer

  • @GreatMasterGaming
    @GreatMasterGaming 4 ปีที่แล้ว +4

    Nice to see one from home, greetings from Hong Kong.

  • @robertgerbicz
    @robertgerbicz 4 ปีที่แล้ว +8

    Much quicker solution:
    the system is symmetric so we can assume that p

    • @munchenmunchen3042
      @munchenmunchen3042 4 ปีที่แล้ว +2

      But here 7/2 is not integer but to be order it has to be integer

    • @robertgerbicz
      @robertgerbicz 4 ปีที่แล้ว +1

      @@munchenmunchen3042 We're working in Z[p], so it is ok. Notice that p!=2 so we could divide by 2 in Z[p] ring.
      [if you want to see an integer here: 7/2 == 7*(p+1)/2 mod p]

    • @nournote
      @nournote 4 ปีที่แล้ว

      @@robertgerbicz what does it mean 'to be order'?

    • @munchenmunchen3042
      @munchenmunchen3042 4 ปีที่แล้ว

      @@robertgerbicz thanks

    • @robertgerbicz
      @robertgerbicz 4 ปีที่แล้ว +1

      @@nournote This is the multiplicative order, see: en.wikipedia.org/wiki/Multiplicative_order.
      The order divides p-1 (in general case divides eulerphi(n), but here n=p prime).

  • @wesleysuen4140
    @wesleysuen4140 4 ปีที่แล้ว +5

    hi from your little fan from hk~~~

  • @クリス-p2k
    @クリス-p2k 4 ปีที่แล้ว

    I just wanna say I'm glad this channel exists. Great explanations for contest problems. Keep up the good work!

  • @KennethVernelen
    @KennethVernelen 4 ปีที่แล้ว +1

    You can spot 5 being a divisor of p or q from the fact that 7^x - 2^x = (7-2)*(7^(x-1) + 2*7^(x-2) +... + 7*2^(x-2)+ 2^(x-1)). This is true for both p & q. So then you can find the prime factors of 7^5 - 2^5, one of which is definitely 5 being 7 minus 2. 16775 is indeed divisible by 5 which gives 3355 which incidently is also divisible by 5 and also by 61 and 11. Hence solutions (5,5), (5,11) & (5,61). Due to the symmetry of the original formula (11,5) & (61,5) are also solutions.

  • @cwtcwtcwt
    @cwtcwtcwt 4 ปีที่แล้ว +1

    Shoutout from Hong Kong. Great video!

  • @Mathblade
    @Mathblade 4 ปีที่แล้ว +1

    Sadly, the wording of the problem does not preclude p = q . So if we let p = q = 1, then (1,1) also
    works since pq =1, and the numerator of 25 is divisible by 1. The set of *all* (p,q) which satisfy
    the expression and conditions therefore includes the mostly trivial instance of the primes (1,1).

    • @wowZhenek
      @wowZhenek 4 ปีที่แล้ว +3

      Pretty sure 1 is not a prime

    • @Mathblade
      @Mathblade 4 ปีที่แล้ว

      @@wowZhenek Thanks for the correction, and yes, by restructuring the operational definition " A number divisible only by 1 and itself " and requiring that 1 be a number, 1 is not a prime number. Evelyn Lamb gives an interesting history & definition in her article: "Why Isn't 1 a Prime Number?", Evelyn Lamb SCIENTIFIC AMERICAN, April 2, 2019 . Her suggested definition of a prime, "p" is: "The number p cannot be written as the product of two whole numbers, neither of which is a unit" This of course, reduces to the operational definition and excludes 1 from the primes without begging the question. Just out of curiosity, which definition did you learn?

    • @wowZhenek
      @wowZhenek 4 ปีที่แล้ว +1

      @@Mathblade I am a simple man, my dude. I learn what I was taught in school. Tens of years ago. I don't know whose definition it was or why, all I know is that 1 is not a prime, for now.

  • @yurya.davydov8947
    @yurya.davydov8947 4 ปีที่แล้ว +9

    Wanted to suggest obvious answer p=q=1, but then understood something 😂 so yeah, no trivial solutions for us guys

    • @Tehom1
      @Tehom1 4 ปีที่แล้ว +4

      He did say that p and q should be primes.

  • @tomatrix7525
    @tomatrix7525 4 ปีที่แล้ว

    Really good content as of late. Great work

  • @lawrencechan6368
    @lawrencechan6368 4 ปีที่แล้ว +2

    Greeting from Hong Kong!!!

  • @shalvagang951
    @shalvagang951 ปีที่แล้ว

    The second case you can show by like p|7^-2^q and q|7^p-2^p
    Is that we assume that p>=q becayse of symmetry
    Then p

  • @lucassandleris4486
    @lucassandleris4486 4 ปีที่แล้ว

    Without having to introduce new variables, when having 7^q≈2^q(p), then 7^q*((p+1)/2)^q≈1(p), then the order mod p of (7(p+1))/2 has to divide q, so it has to be q (if it was 1, then p=5). But the order divides φ(p)=p-1, therefore q

  • @Roger_Kirk
    @Roger_Kirk 4 ปีที่แล้ว +1

    So....gcd(p-1, q) =/=1 .... how do we know that it only works when p=3 and q=2 - how can we know so easily? How do we not know that there isn't a solution in significantly higher numbers?

  • @shiina_mahiru_9067
    @shiina_mahiru_9067 4 ปีที่แล้ว +1

    a great number theory question

  • @StCharlos
    @StCharlos 4 ปีที่แล้ว +1

    Fans from Hong Kong 🇭🇰 +1 🙌🏻

  • @vinc17fr
    @vinc17fr 4 ปีที่แล้ว

    The second part is much too complex. Obviously, q ≠ 2. One has 7^p ≡ 2^p mod q, thus (7/2)^p ≡ 1 mod q. Assuming p ≠ 5 (p = 5 is the first part), the order of 7/2 is > 1, thus the order of 7/2 is p, so that p < q. Similarly, q < p. Thus this second part gives no other solutions.

  • @angelogandolfo4174
    @angelogandolfo4174 4 ปีที่แล้ว +2

    I LOVE your “ok.great.” T-shirt. It’s so you!🇬🇧🇺🇸

  • @omfgmx
    @omfgmx 4 ปีที่แล้ว +3

    Hi, Michael! Thanks for the video!
    I think you've missed (5;25) pair at 4:55 mark - we have one five from the '5' term and one five from (7^q-2^q) term. Wolfram Alpha says this is a valid solution.

  • @hanibahout
    @hanibahout 4 ปีที่แล้ว +1

    How do we know that in the subcase N°1, there does not exist 2 very big prime numbers p and q other than 2 and 3, such that the gcd(p-1,q) is not equal to 1 ?

  • @mrpenguin815
    @mrpenguin815 4 ปีที่แล้ว +4

    I programmed this and got one 'normal' looking answer. Then it spat out every answer where the integer is > 10^16, which from what I know of this type of problem and how R works I assume are not real answers. Time to find out if my pair was correct.

    • @mrpenguin815
      @mrpenguin815 4 ปีที่แล้ว

      @@angelmendez-rivera351 This channel rarely has solutions that reach double digits, but that makes me wonder what the largest number featured on one of these problems is.

  • @debayuchakraborti1963
    @debayuchakraborti1963 4 ปีที่แล้ว +6

    Beautiful Number Theory Problem and equally beautiful solution but I hope Mr.Penn will do some combinatorics problems in the future..It will be really fun

    • @MichaelPennMath
      @MichaelPennMath  4 ปีที่แล้ว +3

      There is a combinatorics problem scheduled in a few days!

    • @srijanbhowmick9570
      @srijanbhowmick9570 4 ปีที่แล้ว +1

      You meant "future" instead of "feature" , right ?

    • @debayuchakraborti1963
      @debayuchakraborti1963 4 ปีที่แล้ว

      @@MichaelPennMath Thank You so much Sir

  • @MichaelGrantPhD
    @MichaelGrantPhD 4 ปีที่แล้ว +3

    That's a good place to sto

  • @adrianamor8472
    @adrianamor8472 4 ปีที่แล้ว +2

    Cant take the qth root on both sides of 7^q=2^q(mod p), only works for x^2 = y ^2 (mod p) iff x = y (mod p) or x = -y (mod p)

    • @seanziewonzie
      @seanziewonzie 4 ปีที่แล้ว +4

      Powers don't work like that in modular arithmetic; they are horrendously non-invertible. The behavior of roots in modular arithmetic is a very complicated question. Even the question square roots in modular arithmetic require some undergrad-level machinery to get going.
      Here's an easier example. 17^3=5^3mod(7), but does 17=5mod(7)? No.

    • @adrianamor8472
      @adrianamor8472 4 ปีที่แล้ว +1

      @@seanziewonzie my bad then. It works for squares, though

    • @seanziewonzie
      @seanziewonzie 4 ปีที่แล้ว +3

      @@adrianamor8472
      17^2=5^2(mod11) but 17 and 5 are not equal mod 11.

    • @adrianamor8472
      @adrianamor8472 4 ปีที่แล้ว +1

      @@seanziewonzie I mean that x^2 = y^2 ( mod p) iff x = y (mod p) OR x = -y (mod p), in the example above 17 = -5 (mod 11)

    • @adrianamor8472
      @adrianamor8472 4 ปีที่แล้ว +1

      Note that x^2 = y^2 (mod p) p divides (x-y)(x+y) p divides x-y or p divides (x+y) x = y (mod p) or x = -y (mod p)

  • @mafprivate8841
    @mafprivate8841 4 ปีที่แล้ว +9

    Wait (p-1,q)>1 has a bunch of possible solutions! Like (p,q)=(7,3),(11,5)...

    • @TechToppers
      @TechToppers 4 ปีที่แล้ว +2

      There is a problem... Let gcd(p-1,q)=d then
      d|p-1
      d|q this means either d=1, perfectly possible. Or d=q...
      If d=q then,
      q|p-1, If q=p-1, then (3,2) the only solution but if not then...
      *Wait... You are RiGHT!*

    • @justanotherman1114
      @justanotherman1114 4 ปีที่แล้ว +1

      @@TechToppers What if we assume wlog that p is less than or equal to q.

    • @TechToppers
      @TechToppers 4 ปีที่แล้ว

      @@justanotherman1114 Hmm... I assumed that earlier in rough work and then I forgot. Lemme try.

  • @oasisfan3149
    @oasisfan3149 4 ปีที่แล้ว

    Greetings from Hong Kong!

  • @SlipperyTeeth
    @SlipperyTeeth 4 ปีที่แล้ว

    Isn't case 1 just a subcase of case 2's subcase 2?
    I think all you really need is to first show that it's the case that gcd(p-1,q)=1 and just do it from there.

  • @henrykoplien1007
    @henrykoplien1007 4 ปีที่แล้ว

    Yep, this one was great...

  • @tomctutor
    @tomctutor 4 ปีที่แล้ว

    Hmmm! it all boils down to knowing FLT like the back of your hand.

  • @prabhatsharma5751
    @prabhatsharma5751 4 ปีที่แล้ว

    Love from Nepal 😊❤

  • @diavolokelevra4795
    @diavolokelevra4795 3 ปีที่แล้ว

    Like from Hong Kong!

  • @tonyhaddad1394
    @tonyhaddad1394 4 ปีที่แล้ว +2

    Micheal there are a theorm sayd if
    (A+b)^p _A^p _b^p)
    If p is prime then all coefision is divisible by p except A^p and b^p
    And that why we minus him
    I solved a solution p=q=5 by this method and i think i proved too
    Im not sure
    It always work !!!!!!!!!!

    • @tonyhaddad1394
      @tonyhaddad1394 4 ปีที่แล้ว +2

      @@angelmendez-rivera351 first consider p=q
      Then we get (7^p _2^p)^2/p^2
      Then we can ignore the square power
      We want( 7^p_2^p)/p
      To be integer
      We can right this at this form (7_2)^p
      Minus or plus some stuff but by this theorem all of that stuff is divisible by p then we can ignor
      We want 5^p /p
      There for there are one possiblity which is 5 beacaus p is prime and only 5 can divide 5^p

    • @tonyhaddad1394
      @tonyhaddad1394 4 ปีที่แล้ว

      @@angelmendez-rivera351 it work only in this case if you want to p=q
      It solutionsss only when p=q and in this case there is one solution

    • @tonyhaddad1394
      @tonyhaddad1394 4 ปีที่แล้ว +1

      👍👍👍👍👍

    • @tonyhaddad1394
      @tonyhaddad1394 4 ปีที่แล้ว +1

      @@angelmendez-rivera351 if you want to watch the video watch
      "Fool-proof test for primes numberphile"

  • @onderozenc4470
    @onderozenc4470 3 ปีที่แล้ว

    No bother to solve this problem on the board. Just at a glance for p = 1, q = 1, the result is 25.

  • @djvalentedochp
    @djvalentedochp 4 ปีที่แล้ว

    nice

  • @utkarshsharma9563
    @utkarshsharma9563 4 ปีที่แล้ว +1

    Video has 314 likes, so I'm not gonna like it right now

  • @JM-us3fr
    @JM-us3fr 4 ปีที่แล้ว +1

    I would do your case 2 a little differently. To negate case 1, we can assume p divides 7^q-2^q AND q divides 7^p-2^p, for p not equal to q. Then 7^q=2^q mod p.
    It's clear from this that p cannot be 2 for we would get 1=0 mod p, and therefore neither can q. Moreover, we already took care of the p=5 case, so we can assume p is odd and not 5. Then we can find integers a, b, c, d such that 2a+pb=1 and 2c+qd=1. Then 7^q=2^q mod p implies:
    (7a)^q=(7^q)(a^q)=(2^q)(a^q)=(2a)^q=(1-bp)^q=1 mod p
    If k is the least positive integer such that (7a)^k=1 mod p, then k must divide q and k must divide p-1 (see lemma). Since q is prime, k=1 or q.
    If k=1, then 7a=1 mod p, so 7=2 mod p which implies p divides 5, so p=5 (a contradiction).
    If k=q, then q divides p-1, which implies q

  • @alephnull00
    @alephnull00 4 ปีที่แล้ว +1

    Hi, I'm from HK!

  • @hrs7305
    @hrs7305 4 ปีที่แล้ว +3

    Hey can anyone help me with this problem on linear algebra it will be appreciated
    Let A , B be n x n matrices with entries from complex numbers such that A and B are Markov
    Let C = AB
    For i,j between 1 and n
    If |a_i,j|

  • @MataMaticas
    @MataMaticas 4 ปีที่แล้ว

    I'm affraid p=q=1 is a solution, where is it?

    • @TFHKzone
      @TFHKzone 4 ปีที่แล้ว

      1 isn't a prime.

  • @اسلاماسلام-ت2ز5و
    @اسلاماسلام-ت2ز5و 4 ปีที่แล้ว +2

    Hey mecheal
    Lim x---》 +&
    X^2(e^1/x - e^ 1/x+1 )
    A ned plzz 😢

    • @bsmith6276
      @bsmith6276 4 ปีที่แล้ว +3

      @@angelmendez-rivera351 I assume that means to take the limit to positive infinity. I get a limit of zero in that case

    • @megauser8512
      @megauser8512 4 ปีที่แล้ว +1

      ​@@bsmith6276 I get - infinity if the question is lim as x ==> + inf of x^2 * [ e^(1/x) - e^(1+1/x) ], since that goes to inf^2 * (e^0 - e^(1+0)) = inf^2 * (1- e), but if the question is lim as x ==> + inf of x^2 * [ e^(1/x) - e^(1/x) + 1], then that goes to inf^2 * 1 = + infinity, but if the question is lim as x ==> 0+ of x^2 * [ e^(1/x) - e^(1/x) + 1], then that clearly = 0, but if the question is lim as x ==> 0+ of x^2 * [ e^(1/x) - e^(1+1/x)], then that = lim as x ==> 0+ of x^2 * [ e^(1/x) - e^(1/x) * e] by exponent rules, which then = lim as x ==> 0+ of (1 - e) * x^2 * e^(1/x) = (1 - e) * lim as x ==> 0+ of e^(1/x) / x^(-2) = (1 - e) * lim as x ==> 0+ of [-e^(1/x)/x^2] / [-2*x^(-3)] by L'Hôpital's Rule = (1 - e) * lim as x ==> 0+ of e^(1/x) / [2*x^(-1)] = (1 - e) * lim as x ==> 0+ of [-e^(1/x)/x^2] / [-2*x^(-2)] by L'Hôpital's Rule again = (1 - e) * lim as x ==> 0+ of e^(1/x) / 2, which finally goes to - infinity.

    • @اسلاماسلام-ت2ز5و
      @اسلاماسلام-ت2ز5و 4 ปีที่แล้ว

      @@angelmendez-rivera351 You can not post your Instagram account to communicate about this question, I did not understand very well from the comment

    • @اسلاماسلام-ت2ز5و
      @اسلاماسلام-ت2ز5و 4 ปีที่แล้ว

      @@megauser8512 I think you are wrong because I think the result is 1

    • @megauser8512
      @megauser8512 4 ปีที่แล้ว

      @@angelmendez-rivera351 You did not make a mistake, but @B Smith did.

  • @screamman2723
    @screamman2723 4 ปีที่แล้ว +3

    second