Japanese Math Olympiad Challenge | A Very Nice Geometry Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ม.ค. 2025

ความคิดเห็น • 22

  • @imetroangola17
    @imetroangola17 หลายเดือนก่อน +2

    Solution:
    Note that ∠APB= 2θ. ∆ABP is rectangular, therefore:
    PB = 8/sin 2θ, on the other hand, in the rectangle ∆AQC, we have:
    QB = 5/cos θ. Thus, in the right triangle ∆BPQ:
    cos θ = QB/PB
    cos θ = 5/cos θ ÷ 8/sin 2θ
    cos θ = (5/cos θ) × (2sin θ cos θ/8)
    cos θ = 5 sin θ/4
    sin θ/cos θ = 4/5→ tg θ = 4/5.
    In the right triangle ∆BQC:
    tg θ = QC/BC → 4/5 = QC/5
    QC = 4 → DQ = 4.
    In the right triangle ∆PDQ, we have:
    tg θ = PD/DQ → 4/5 = PD/4
    PD = 16/5. Therefore,
    [PDQ] = PD × DQ/2 = 16/5 × 4/2
    *[PDQ] = 32/5 square units*

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب หลายเดือนก่อน +2

    Suppose QC=x and PD=y, from which QD=8-x. Triangles BQC and PDQ are similar, from which 5/x=(8-x)/y, so 5y=8x-x². Line BC intersects line PQ at point S. Triangles PDQ and CQS are congruent, from which QC=QD, from which 8-x=x, so x=4, from which y=16/5, so the area of triangle PDQ is equal to ((16/5)*4)/2=32/5.

  • @mochemiguel1233
    @mochemiguel1233 หลายเดือนก่อน

    Extend PQ, and BC and intersect in M point, and if you notice, BPQ and BMQ are congruents, CM = a (it'll be used later), and PDQ and QCM are congruents too, so DQ = QC = 4 (You got half of problem). Then, BM = BP = 5+a (a is CM), AP= 5-a and you can use PIT, (5+a)2 = (5-a)2 + (8)2 ==> a = 3.2. Then Area is 4 x 3.2 / 2 == 32/5

  • @zehradiyab3439
    @zehradiyab3439 หลายเดือนก่อน +2

    I proof DC=4 in another way
    If we put PB is a diameter of circle which have two right inscribed angles,
    If we put O is the centre of the circle which passes through the points A,B,P andQ,
    So AO and BO are radii of the circle,
    so ABO is isosceles triangle.
    If we take the point E as a midpoint of AB,
    so OE is perpendicular to AB, and OE is parallel to BC ...1
    OB=OQ=r
    so angle OBQ=angle OQB ,
    so angle CBQ=angle OQB,
    so CQ is parallel toBC ...2
    From 1 and 2 EQ which passes through the point O is parallel to BC,
    so angle EQC=90° and EQ is perpendicular to DC,
    so AEQD is rectangle,
    and DQ=AE=½AB=½×8=4

    • @murdock5537
      @murdock5537 หลายเดือนก่อน

      Nice one!

  • @marcgriselhubert3915
    @marcgriselhubert3915 หลายเดือนก่อน +1

    Let's use an orthonormal center B, first axis (BA), second axis (BC), and let's note t = tan(theta). We have QC = BC.t = 5.t in triangle BCQ
    We also have AP = AB.tan(90° -2.theta) = 8.cotan(2.theta) = 8.(1/tan(2.theta)) = 8.((1 -t^2)/2.t) = (4 -4.t^2)/t = (4/t) - 4.t
    We have Q(5.t; 5), P(8; (4/t) -4.t), VectorBQ(5.t; 5), VectorQP(8 -5.t; (4/t) - 4.t -5)
    These vectors are orthogonal, so t(8 -5.t) + ((4/t) -4.t -5) = 0 or 5.(t^3) -4.(t^2) +5.t -4 = 0 or (t^2 + 1).(5.t - 4) = 0, which gives that t = 4/5.
    Then AP = 5 - 16/5 = 9/5 and DP = 5 - 9/5 = 16/5, and CQ = 4 and DQ = 8 - 4 = 4. The area of DQP is (1/2).DQ.DP = (1/2).4.(16/5) = 32/5.

  • @marioalb9726
    @marioalb9726 หลายเดือนก่อน +1

    Angles θ only can be equals, if position of point Q, is equidistant in the segment DC. Only possibility !!! For other ratio 5/8, angles θ can't be equals.
    b = 8/2 = 4 cm
    h = 4*4/5= 16/5 cm
    A = ½b.h = ½*4*16/5
    A = 32/5 cm² ( Solved √ )

  • @2012tulio
    @2012tulio 25 วันที่ผ่านมา

    Let PD = x , DQ= y
    Tan theta= x/y ----eq1
    Tan theta= 8-y / 5 -----eq2
    Tan 2theta= 8/ 5-x -----eq3
    By solving these 3 equations together we get x = 3.2 and y = 4.2
    So the area of triangle PDQ is 0.5 * 3.2* 4.2 = 6.7

  • @oscarcastaneda5310
    @oscarcastaneda5310 หลายเดือนก่อน +1

    I determined that tan(theta) = 4/5.
    From this , PD = 16/5 and DQ = 4.
    The Area calculates to 32/5.

  • @himo3485
    @himo3485 12 วันที่ผ่านมา

    BEQ≅BCQ     BC=BE=5
    PEQ≅PDQ CQ=EQ=DQ=x x+x=8 2x=8 x=4     
    QDP∞BCQ 4/5 = PD/4 PD=16/5
    area of triangle DPQ = 4*16/5*1/2 = 32/5

  • @ludmilaivanova1603
    @ludmilaivanova1603 หลายเดือนก่อน

    I found x=4 by just using similarrity of triangles BCQ, PDQ and BQP and also using DQ=x and QC= 8-x. No additional constructions.

  • @FFernandezB
    @FFernandezB หลายเดือนก่อน

    Three similar triangles, write three proportions and solve the equation

  • @giuseppemalaguti435
    @giuseppemalaguti435 หลายเดือนก่อน +1

    Solita procedura trigonometrica...Ablue=differenza di 40-(somma dei 3 triangoli)=40-32(ctg2θ)^2-(25/2)tgθ-10(secθ)^2...con tgθ=4/5...Ablue=40-36/5-10-82/5=(200-36-50-82)/5=32/5...come sempre,credo ci saranno metodi piu veloci

  • @michaeldoerr5810
    @michaeldoerr5810 หลายเดือนก่อน +2

    Hello, I got the answer before you did. The area was 32/5 units square. And it looks like HL congruence has to be used to calculate x. And HL similarity is used to compute the other side. A pair of congruent triangles was required. I hope that this makes sense.

  • @johnoehrle5973
    @johnoehrle5973 หลายเดือนก่อน

    PQ=BQ*QC/5. DQ=PQ*5/BQ=QC=4. DP=4/5*4...

  • @befactfull525
    @befactfull525 หลายเดือนก่อน +2

    aap ek teacher ho kya sir ya phir bhai tu koi intelligent math lover student hai

  • @nenetstree914
    @nenetstree914 หลายเดือนก่อน +1

    32/5

  • @paololazzarin2215
    @paololazzarin2215 หลายเดือนก่อน

    ...a cosa servono tali calcoli?

  • @wasimahmad-t6c
    @wasimahmad-t6c หลายเดือนก่อน +1

    Area o bhi hosakta hai