Linear Algebra - Lecture 8 - Span

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ม.ค. 2025

ความคิดเห็น • 24

  • @BenM2291
    @BenM2291 3 ปีที่แล้ว +31

    It’s 4am and I’ve been trying to understand this from my textbook for a while. 9 minutes on here was all I needed- cheers buddy!

  • @tinktwiceman
    @tinktwiceman 5 ปีที่แล้ว +17

    I was so confused about what "span" actually meant. Thank you for this video!

  • @Brahma2012
    @Brahma2012 6 ปีที่แล้ว +17

    Beautiful explanation of Span

    • @cutcc
      @cutcc 5 ปีที่แล้ว +3

      Indeed

  • @flidoofficial1848
    @flidoofficial1848 ปีที่แล้ว

    this man is carrying my module on his back and he is doing better than my lecturer

  • @timilsesi3226
    @timilsesi3226 3 ปีที่แล้ว +2

    3 year and 5 months later, you are still saving lives!!

  • @zahidrasoolkhan2277
    @zahidrasoolkhan2277 4 ปีที่แล้ว +1

    Best explaination so ever to clear our concept love and support from ANANTNAG Kashmir J&K Indians occupied kashmir J&K

    • @varadleleot2084
      @varadleleot2084 2 ปีที่แล้ว

      Only Kashmiri's living in Indian occupied Kashmir do study. People living in POK are savages. I just hope that your future is bright my brother 💖💖

  • @farruhhabibullaev5316
    @farruhhabibullaev5316 4 หลายเดือนก่อน

    Great explanation.

  • @zahidrasoolkhan2277
    @zahidrasoolkhan2277 4 ปีที่แล้ว +1

    Sir it is only y u who cleared our confusion but Indians don't know

  • @kostaskompostas
    @kostaskompostas 2 ปีที่แล้ว

    damn you make it all seem so easy, kudos !

  • @mathdodo3743
    @mathdodo3743 2 ปีที่แล้ว +1

    Really appreciate your help.
    Thank you

  • @firstlady9657
    @firstlady9657 3 ปีที่แล้ว +2

    thanks sir, from turkey :)

  • @deanhuang2181
    @deanhuang2181 5 ปีที่แล้ว +4

    Tbh Northwestern's undergraduate teaching sucks. Thank you so much for your videos!

  • @muhamadariefhidayat1914
    @muhamadariefhidayat1914 2 ปีที่แล้ว

    excellent explain sir. tahnks

  • @zakaboudich2972
    @zakaboudich2972 2 ปีที่แล้ว

    Excelent!

  • @kiMANIM.1111
    @kiMANIM.1111 ปีที่แล้ว

    pure Gold

  • @Canvas1318
    @Canvas1318 4 หลายเดือนก่อน +1

    In short, Thanku.

  • @gaussianelimination197
    @gaussianelimination197 6 ปีที่แล้ว

    I had a few questions continuing off from the slide at 2:30.
    1. Must u and v exist in a particular dimension of coordinate space
    (e.g. R^2 or R^3) for their span to create a plane?
    2. Is it only a sum of two vectors that creates a plane? Could I get
    shapes other than a plane by adding more than two vectors in the
    R^3 and above real coordinate spaces.
    3. Last, does a vector that exist in R^2 also exist in R^3.

    • @HamblinMath
      @HamblinMath  6 ปีที่แล้ว +4

      1. If you're working in higher-dimensional space (R^4 and up), then the span of two independent vectors is a higher-dimensional analogue of a plane.
      2. The *span* of two independent vectors is a plane; the *sum* of two vectors is just another vector. If you span more than two vectors, you can get higher-dimensional spaces (but those don't have convenient names).
      3. You can think of a vector in R^2 (say, (4, -7)) as being "embedded" in higher dimensions by tacking on zeroes at the end. So a copy of the vector (4, -7) exists in R^3 as (4, -7, 0).

    • @gaussianelimination197
      @gaussianelimination197 6 ปีที่แล้ว +1

      @@HamblinMath
      Thanks for the help. I hope you don't mind me asking if my understanding of question 3 is correct:
      The information contained by a vector in R^2 can be expressed by a vector in R^3 by adding a '0 entry' to the R^2 vector. For example, I can represent the vector (4, -7) as (4, -7, 0). However, as a mathematical convention, the vector (4, -7) is only defined in R^2.

    • @HamblinMath
      @HamblinMath  6 ปีที่แล้ว +2

      @@gaussianelimination197 Yes, (4, -7) and (4, -7, 0) are different, but closely related.

  • @tidalfriction5301
    @tidalfriction5301 4 ปีที่แล้ว

    I'm still with you