Every Weird Geometry Paradox Explained

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 พ.ย. 2024

ความคิดเห็น • 227

  • @ThoughtThrill365
    @ThoughtThrill365  25 วันที่ผ่านมา +2

    Let me know if there's a topic you'd like me to cover next. :)

  • @LukewarmAnimations
    @LukewarmAnimations หลายเดือนก่อน +213

    9:38 WRONG VIDEO

    • @atlasxatlas
      @atlasxatlas หลายเดือนก่อน +11

      lmao i was just about to comment that

    • @something6561
      @something6561 หลายเดือนก่อน +57

      "... i don't fucking care what happens when you turn a figure 8 into a fucking circle, i don't give a flying fuck about avoiding sharp bends, why are you avoiding me? ..."

    • @marcelob.5300
      @marcelob.5300 หลายเดือนก่อน

      REAL ONE APPEARS TO BE THIS: th-cam.com/video/OI-To1eUtuU/w-d-xo.html

    • @klembokable
      @klembokable หลายเดือนก่อน +11

      LOL I had to check too I swear this happens to this guy all the time

    • @Mosa-Mosa.0
      @Mosa-Mosa.0 หลายเดือนก่อน +3

      i was about to say that lol

  • @TheYosuppeeps
    @TheYosuppeeps หลายเดือนก่อน +223

    I like that the screenshot is from the Hugbees video

    • @N54MyBeloved
      @N54MyBeloved หลายเดือนก่อน +10

      It had to have been an accident lmao

    • @VermillionPengu
      @VermillionPengu หลายเดือนก่อน +2

      Sorry, which video?

    • @j_the_guyis_taken3409
      @j_the_guyis_taken3409 หลายเดือนก่อน +24

      ​@@VermillionPengu Huggbees parody "turning a sphere outside in"

    • @youraveragerobloxkid
      @youraveragerobloxkid หลายเดือนก่อน +13

      He also kinda sounds like huggbees

    • @ctrl-alt-bingo
      @ctrl-alt-bingo หลายเดือนก่อน +9

      I have a conspiracy theory that he is hugbees, they sound almost identical

  • @uropinionistrash4461
    @uropinionistrash4461 หลายเดือนก่อน +58

    9:39 Bro put the Huggbees version 😂 iykyk

  • @orcynus_
    @orcynus_ หลายเดือนก่อน +82

    Still watching Vsauce BanachTarski video from time to time, and still doesnt understand it fully

    • @thelibyanplzcomeback
      @thelibyanplzcomeback หลายเดือนก่อน +11

      Every shape has an infinite number of points in it. Because of the Hilbert's Hotel paradox, if you take an infinitely small chunk out of a shape, there will always be another infinitely small chunk that replaces it, a chunk that replaces that chunk, a chunk that replaces that chunk... you get the idea. As a result, you can keep taking infinitely small chunks out of that shape and create an identical copy of that shape... or an infinite number of them.

    • @LeducDuSapin
      @LeducDuSapin หลายเดือนก่อน +2

      Me too. I just love this vid

    • @Fire_Axus
      @Fire_Axus หลายเดือนก่อน +1

      YoFeArIr

    • @pleaseenteranamelol711
      @pleaseenteranamelol711 หลายเดือนก่อน +1

      I guess the word "infinity" means nothing because you can always divide it further and further. Real life objects dont work like that. You're trying to apply common, real sense to something which only makes sense as a concept in the minds of eggheads.

    • @boredphysicist
      @boredphysicist หลายเดือนก่อน +2

      ​@thelibyanplzcomeback youre changing how you handle infinities halfway through, the perfect example of taking infinitely small pieces out infinite times is a tank of water
      make a hole in a tank of water, each infinitely small amount of time an infinitely small amount of water leaves, but if you integrate you realise it doesnt duplicate

  • @theelk801
    @theelk801 หลายเดือนก่อน +10

    7:58 usually when we talk about spaces like S^2 or R^3 we pronounce them as “S Two” or “R Three”, also the R should be blackboard bold since it denotes the real numbers

  • @sempaciencia5428
    @sempaciencia5428 หลายเดือนก่อน +36

    If i got a nickel for every time someone mistook a hugsbee video for an educational video, i would have 2 nickels, which isn't a lot but it's surprising it happened twice.
    But hey! Now you are in the same level ad cnn

  • @Galinaceo0
    @Galinaceo0 หลายเดือนก่อน +41

    How is the first one a paradox?

    • @anaveragekiwi
      @anaveragekiwi หลายเดือนก่อน +24

      its a statement that sounds false but surprisingly is true. yes, thats a type of paradox

    • @Galinaceo0
      @Galinaceo0 หลายเดือนก่อน +1

      @@anaveragekiwi why does it sound false?

    • @benjaminhill6171
      @benjaminhill6171 หลายเดือนก่อน +15

      ​@@Galinaceo0Only because it's surprising, because most people expect it to be a lot more than 6m that you have to add.

    • @anaveragekiwi
      @anaveragekiwi หลายเดือนก่อน +10

      @@Galinaceo0its very counter intuitive that you only need 6.28 metres added to the circumference to change the radius of the entire earth by a metre. i mean, it makes perfect sense when you think about it and enough exposure to it makes it much more intuitive, but at first hearing it sounds obviously false

    • @newwaveinfantry8362
      @newwaveinfantry8362 หลายเดือนก่อน +7

      Paradox doesn't just mean self-contradiction. It also means counterintuitive fact.

  • @psymar
    @psymar หลายเดือนก่อน +25

    Did you know that Banach-Tarski is an anagram of Banach-Tarski Banach-Tarski

    • @leisti
      @leisti 17 วันที่ผ่านมา +1

      Did you know that Google's translation of "Did you know that Banach-Tarski is an anagram of Banach-Tarski Banach-Tarski" into English is "Did you know that Banach-Tarski is an anagram of Banach-Tarski Banach-Tarski"?

    • @alimbis
      @alimbis 4 วันที่ผ่านมา

      good one

  • @captaincarbon95
    @captaincarbon95 หลายเดือนก่อน +23

    Just a comment regarding your explanation of the coin rotating around the other coin. Your explanation kind of gives the feeling, that the outer coin always has to double the amount of spins, when in reality it is the size ratio + 1 for the Rotation around itself. So for equaliy sized coins the size ratio is 1 and therefore the outer coin travels 1+1=2 times the circumfarance of the inner coin. However, if the outer ball has only a radius of 1/3, it spins 3+1 = 4 times around Insel and not 6 times.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน +1

      What part of the explanation gives that feeling?

    • @YouTube_username_not_found
      @YouTube_username_not_found หลายเดือนก่อน

      ​@@isavenewspapers88903:41

    • @YouTube_username_not_found
      @YouTube_username_not_found หลายเดือนก่อน +1

      ​@@isavenewspapers8890Probably the part at 3:41

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน +1

      @@TH-cam_username_not_found That just says that coin B traveled twice as far and therefore rolled twice as much. This logic would still apply if coin B had a radius of only 1/3 cm. In that case, if you rolled coin B across a flat surface, it would rotate by 1 turn after traveling (1/3)τ cm. Rolling it around coin A causes it to travel (4/3)τ cm, which is 4 times as far. Therefore, coin B rotates by 4 turns in this scenario.

    • @YouTube_username_not_found
      @YouTube_username_not_found หลายเดือนก่อน +1

      @@isavenewspapers8890 It feels like the distance will always double rather than it will always increase by 1 unit. Do you get what I mean?

  • @TheMadFoxes
    @TheMadFoxes หลายเดือนก่อน +1

    3:48 also, the coin thing is so much more simple than it’s let on to be; they roll “against” each other at the same rate for the same distance, but since coin A doesn’t move, halfway through coin B’s journey the connection point is halfway around the coin, thus tada 🎉 it’s right side up because it’s connected under coin A rather than on top. Not all that math

  • @temboyandougala9004
    @temboyandougala9004 หลายเดือนก่อน +5

    According to the Banach-Tarski paradox there shouldn't be such thing as people with one ball.

    • @paolarei4418
      @paolarei4418 27 วันที่ผ่านมา +1

      I have only 3😢

  • @MarioMasta64
    @MarioMasta64 หลายเดือนก่อน +2

    9:38 definitely the correct videos everyone should learn from huggbees :) (funnily i saw the original before the huggbees one)

  • @zakialmahin7278
    @zakialmahin7278 หลายเดือนก่อน +4

    I don't know if you see this but I want you to know - keep making these types of videos of geometry - - -
    Also try to do a video on non euclieadian geometrical 3d planes

  • @Vengemann
    @Vengemann หลายเดือนก่อน +4

    The string girdling paradox confused most of my friends and needed to solve it mathematically 😭

    • @stieli5816
      @stieli5816 หลายเดือนก่อน

      😭😭😭😭😭yes cry some more😭😭😭😭for your understanding of what an actual paradox is, equals your General iq in well defined logic that is Just counterintuitive to incompenent idiots like you 😭😭😭😭😭

  • @Coldo3895
    @Coldo3895 หลายเดือนก่อน +2

    I love the idea that the function which, to an arc (basically any line), associate its length, is not continuous !

  • @roneyandrade6287
    @roneyandrade6287 หลายเดือนก่อน +3

    Your videos are so good, thanks for putting the vector calculus. I was able to follow it

  • @CoulterKawaja
    @CoulterKawaja 12 วันที่ผ่านมา

    2:10 the easiest way to visualize this is to look at the top of the coins head orientation. At the top it is facing up, the it is facing up again at the bottom, then back to it originally at the top

  • @CaritasGothKaraoke
    @CaritasGothKaraoke 25 วันที่ผ่านมา

    On the coins one: Huh? It isn’t rotating twice. That’s just an illusion because at the halfway point the surface upon which it‘s rolling is fully inverted. If you unwrapped it to flat at that moment, the rolling coin would be upside-down. It’s rolling the same distance in both orientations.

  • @matthewmaas9031
    @matthewmaas9031 หลายเดือนก่อน +39

    Upvoted for using tau.

    • @drewsharp9162
      @drewsharp9162 26 วันที่ผ่านมา +1

      that’s funny because I was like why are we using this just do pi*d lol

  • @TheBalthassar
    @TheBalthassar หลายเดือนก่อน +1

    I think the easiest way to mentally disprove the staircase paradox is to imagine that instead of the point off of the line being a right angle it's literally any other angle following the rest of the same rules. Under that restriction it's possible to make the limit of the length equal literally any value greater than ~1.4, which if you accept that then length has no meaning or it's a faulty measurement. It looked like one of the other proof diagrams you flashed up may have being along a similar thought process.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      Why would "2 = √2" not be a problem to you, but then you draw the line at "length makes no sense"?

    • @TheBalthassar
      @TheBalthassar 29 วันที่ผ่านมา

      @@isavenewspapers8890 I don't know how you even came to that conclusion from what I said.

    • @isavenewspapers8890
      @isavenewspapers8890 29 วันที่ผ่านมา

      @@TheBalthassar The proof you reference appears to be a proof by contradiction: you begin with a set of assumptions, prove that those assumptions lead to an absurd result, and conclude that at least one of the assumptions must be incorrect. But there was already such a proof that was all but stated in the video, which I will write explicitly here:
      "Assume that the limit of the lengths of the staircases is equal to the length of the limit of the staircases. The limit of the lengths of the staircases is 2. The limit of the staircases is the diagonal line segment, whose length is √2. But 2 is not equal to √2, so this is a contradiction. Therefore, the limit of the lengths of the staircases cannot be equal to the length of the limit of the staircases."
      So, did you just not notice that one?

    • @TheBalthassar
      @TheBalthassar 29 วันที่ผ่านมา

      @@isavenewspapers8890 You appear to be under the mistaken impression that my point is disregarding that not building upon it. You're arguing with a straw man.

    • @isavenewspapers8890
      @isavenewspapers8890 29 วันที่ผ่านมา

      @@TheBalthassar Your claim was that your proof is the easiest way to do it. However, it involves a bit of extra work that can be entirely skipped to produce the same conclusion. I don't see how that's easier than the other way.

  • @techdeth
    @techdeth หลายเดือนก่อน +1

    Pardon my calculus but FUKKIN SUBSCRIBED

  • @tsvtsvtsv
    @tsvtsvtsv หลายเดือนก่อน +28

    that has to be the least informative explanation of banach-tarski i've ever seen

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน +3

      Hey, I know you. You're the one who was stirring up trouble in the comments of the video adaptation of The Tau Manifesto. Not sure if you're a troll or what, but it's funny running into you again.
      But yeah, a comprehensive explanation of the Banach-Tarski paradox doesn't work well with the 2-minute-per-section format. I feel like you'd need 10 minutes, bare minimum, even assuming the viewer already has some basic experience with set theory.

    • @tsvtsvtsv
      @tsvtsvtsv หลายเดือนก่อน

      @@isavenewspapers8890 i was certainly not "stirring up trouble." tau evangelism is not mathematical or self-consistent, it's more like people preferring 432hz tuning to 440hz because the numbers are more "pure"

    • @tsvtsvtsv
      @tsvtsvtsv หลายเดือนก่อน

      there are instances where tau is a more appropriate constant and instances where pi makes more sense. tau-absolutists who pretend to have forgotten about the existence of pi because they've reprogrammed their brains are closer in nature to cult leaders than mathematicians

    • @erner_wisal
      @erner_wisal หลายเดือนก่อน +1

      Yt "deleted" the response lol

    • @Bdcrock
      @Bdcrock หลายเดือนก่อน

      @@erner_wisal hes an idiot

  • @ScopeLab
    @ScopeLab หลายเดือนก่อน +2

    i have the power to take this video from 999-1000 likes and i’m abusing that

  • @RibusPQR
    @RibusPQR หลายเดือนก่อน +1

    "Given any two reasonable solids, either one can be chopped up and rearranged into the other."
    But what if the two have different Dehn invariants?

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน +2

      The Dehn invariant arises as part of a problem involving finitely many straight cuts of a solid. Such restrictions do not apply in the case of Banach-Tarski.

    • @RibusPQR
      @RibusPQR หลายเดือนก่อน +1

      @@isavenewspapers8890 Oh, that makes sense.

  • @Quasarbooster
    @Quasarbooster หลายเดือนก่อน +10

    As a tau appreciater, thank you for using tau instead of pi in the first few examples :)

    • @vibbruh
      @vibbruh หลายเดือนก่อน +1

      Newbie here, can u give some context? sorry for being dum

    • @Quasarbooster
      @Quasarbooster หลายเดือนก่อน

      @@vibbruh tau is equal to 2*pi. So any equation where you use pi, you could use tau instead. For example, the circumference of a circle is 2*pi*r, or you can say it's tau*r. Some people argue over which is better: pi or tau.

    • @mr.meowington8346
      @mr.meowington8346 หลายเดือนก่อน

      Pi tastes better at least

  • @snoopy1alpha
    @snoopy1alpha หลายเดือนก่อน

    The circle one I know the other way around. You extend the circumference with one meter of string and the question is, if a mouse would fit under the rope. In this case I remember the radius to raise about 16cm which would allow some mice stacked under the rope.

  • @minirop
    @minirop หลายเดือนก่อน +1

    when I was young, I joked to friend that I could prove that 1 + 1 = 1 using the staircase limit. (I already knew that was silly and impossible, but still funny)

  • @XVYQ_EY
    @XVYQ_EY หลายเดือนก่อน +5

    Banach is pronunced banahh, not barrack

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      Well, that second one is also not how the narrator pronounced it.

    • @XVYQ_EY
      @XVYQ_EY หลายเดือนก่อน

      @@isavenewspapers8890 he said it twice, first it was "banack", second was "barrack"

  • @magicmulder
    @magicmulder หลายเดือนก่อน

    The first one isn’t just interesting because you only have to add 6.28 meters. It’s interesting because it’s entirely independent of the initial radius.
    So whether you’re talking about a 1m radius or Earth or the entire universe, you always have to add only 2pi meters to make the radius 1 meter bigger.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      That's exactly what the video says at 1:38, so I don't know why you're just repeating it.

  • @goldencheeze
    @goldencheeze หลายเดือนก่อน

    i think the first paradox feels weird at first because we see the visual and think about the area, instead of the circumference

  • @Mizai
    @Mizai 29 วันที่ผ่านมา

    this video is sponsored by adblock i totally understand why people use adblock i pay for youtube premium but still have to listen to sponsorship ads i really understand people now and weird youtube doesn't

  • @GUMMY_MKII
    @GUMMY_MKII หลายเดือนก่อน +1

    1:48
    c a r

  • @jan_Linaso1178
    @jan_Linaso1178 หลายเดือนก่อน +2

    As soon as I heard tau I subbed lol

  • @kaiserinjacky
    @kaiserinjacky หลายเดือนก่อน +8

    WRONG OUTSIDE IN DONT WATCH THAT ONE

    • @mrpanterson
      @mrpanterson หลายเดือนก่อน +1

      DO WATCH THAT ONE, IT'S HILARIOUS

    • @Lilac757
      @Lilac757 หลายเดือนก่อน

      Lovely profile picture
      /genuine
      PS. Please don't change it so that it makes me look bad. :)

  • @marcelob.5300
    @marcelob.5300 หลายเดือนก่อน +1

    I can't believe how amazingly good you are.

  • @ciCCapROSTi
    @ciCCapROSTi หลายเดือนก่อน +3

    I don't think the staircase works. If you always halve it, you'll never cover irrational points, which is almost every point on the diagonal. So the limit of the staircase is NOT the diagonal.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน +2

      That's not how limits work. The sequence doesn't actually have to reach the point in question; it just has to approach it. For example, the function sin(x) / x never attains a value of 1, but its value approaches 1 as x approaches 0, so the limit of the function as x approaches 0 is 1.

  • @NoahSpurrier
    @NoahSpurrier หลายเดือนก่อน

    I wish there was an intuitive way to understand the Banach-Tarski paradox.

    • @magicmulder
      @magicmulder หลายเดือนก่อน +1

      That’s hard because it’s so counter-intuitive at its core.

    • @YouTube_username_not_found
      @YouTube_username_not_found 19 วันที่ผ่านมา +2

      Vsauce made a quite good video about it with a relatively intuitive explanation. I don't think you'll ever find a more intuitive explanation than theirs, at least til now.

  • @deansarabia9782
    @deansarabia9782 หลายเดือนก่อน

    Why I always watch these at night

  • @sayther01
    @sayther01 หลายเดือนก่อน +1

    I understand that the math is correct but still cant wrap my head around the String girdling Earth. It's very counterintuitive that for the whole Earth it's just some meters.

    • @justusschoenmakers8987
      @justusschoenmakers8987 หลายเดือนก่อน +5

      If you dont find it intuitive think of a simpler shape like a square. If you strap a rope around it and do the same you wanted to for the earth you could do it like this: step1: cut the rope at every corner
      Step 2 place all 4 ropes 1 meter from the side of the square the rope was touching
      Step 3 notice the extra length needed. Its all at the corners, and this isnt alot at all, and it doesnt depend on how big the initial square is. Now expand this idea in your head to a circle.

    • @elementgermanium
      @elementgermanium หลายเดือนก่อน +1

      It’s because the equation is just tau times the radius. It’s a linear relationship- adding 1 to the radius ALWAYS adds tau to the circumference.
      If you want the radius to affect the amount you add in the way you’re thinking, you would need an r^2 term

    • @taragnor
      @taragnor หลายเดือนก่อน

      It's only a paradox when you apply it to something large. If you picture a very small object with a string around it, like a 1 cm sphere, it becomes much more apparent that increasing the radius by 1 meter can't be related to the diameter of the original object.

    • @magicmulder
      @magicmulder หลายเดือนก่อน

      It’s because if you calculate the length of string to add, it’s independent of the original radius. And yes, it is indeed strange that adding 6.28 m to a rope
      around the universe has the same effect as adding 6.28 meters to a rope around a basketball.

  • @SuperDoge-dev
    @SuperDoge-dev หลายเดือนก่อน +2

    8:20 oh no

  • @I_is_the_are_confused
    @I_is_the_are_confused 8 วันที่ผ่านมา

    8:15 Hey look i found a material that can go through itself *accidentally folds it*

  • @erdmannelchen8829
    @erdmannelchen8829 หลายเดือนก่อน

    I'm sad that they didn't flip tau and pi, since tau looks like half a pi, or rather pi looks like two taus next to each other.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      A redefinition of the mathematical symbol π would be... unpleasant, to put it mildly. We'd have to destroy all the old records and write new ones, or else deal with ambiguity as to which number we're using when we write "π".

  • @crispyandspicy6813
    @crispyandspicy6813 หลายเดือนก่อน

    since the point on the circumference of the coin traces a cardioid shape, i wonder if it's related to the mandelbrot fractal in some way

  • @titastotas1416
    @titastotas1416 หลายเดือนก่อน +1

    If there is no contradiction is it even a paradox?

    • @Bdcrock
      @Bdcrock หลายเดือนก่อน

      No, that’s not what a paradox is. A paradox is something that cannot be proven or disproven like the grandfather paradox or the boots paradox. You will never find a contradiction in traditional versions of those two.

    • @titastotas1416
      @titastotas1416 หลายเดือนก่อน

      @@Bdcrock what I meant is that in attempt to solve a paradox often a contradiction arises. What the video contains are not paradoxes, the examples are just math problems that have an answer that is not intuitive at first.

    • @Bdcrock
      @Bdcrock หลายเดือนก่อน

      @@titastotas1416 yes and you are correct the difference between what you’re saying and what I’m saying however is that all paradoxes have contradictions but that is just not true

    • @titastotas1416
      @titastotas1416 หลายเดือนก่อน

      @@Bdcrock listen up, I never stated that all paradoxes have contradictions, in fact I cant think of a paradox that has a contradiction in its formulation. What I meant and I think I have stated it clearly enough already is that in attempts to solve a paradox one will be faced by a contradiction and that is always true ,If you don't agree with that give me a paradox that does not result in a contradiction when an attempt to solve is made. We are not in disagreement, I agree with the definition of paradox you have provided previously. In fact I don't see what your issue is.

    • @Bdcrock
      @Bdcrock หลายเดือนก่อน

      @@titastotas1416 oh i misunderstood i thought you meant the paridox itself is a contradiction

  • @newwaveinfantry8362
    @newwaveinfantry8362 หลายเดือนก่อน +1

    I love that you're making these beautiful concepts accessible to a general public!

  • @temmie5764
    @temmie5764 หลายเดือนก่อน

    You failed to mention the “paradox” part of the coin one at all

    • @benjaminhill6171
      @benjaminhill6171 หลายเดือนก่อน +3

      It's only called a paradox because the result is unexpected. There's no logical contradiction in the situation.

    • @temmie5764
      @temmie5764 หลายเดือนก่อน

      the paradox part comes in when the coin rotates seemingly a different amount of times depending on where the focus is, this was not mentioned, also it obviously goes around 2 times idk how that could be unexpected

    • @benjaminhill6171
      @benjaminhill6171 หลายเดือนก่อน

      @@temmie5764 At least for me, my intuition says that since the two coins are touching, the revolving coin's edge will go exactly one circumference-distance. I know that's wrong, it's just that that's what my intuition says. Considering this situation is a common one to cite for unintuitive behavior (and an entire group of SAT questions creators got it wrong), obviously many people have intuition similar to what I described. Good on you for having a better intuition.

    • @temmie5764
      @temmie5764 หลายเดือนก่อน +1

      the thing is, it does only go around once, but it also goes around twice, it just depends on the observer, thats the paradoxical part that isnt mentioned

  • @leftysheppey
    @leftysheppey หลายเดือนก่อน

    I've watched outside in too many times 🙃

  • @bleesev2
    @bleesev2 28 วันที่ผ่านมา

    Paradox now means unintuitive i guess

    • @Tsbwi82
      @Tsbwi82 20 วันที่ผ่านมา

      Thats exactly what it means

  • @TheMadFoxes
    @TheMadFoxes หลายเดือนก่อน

    Hmm 3:08 in, and none of this is paradoxical yet

  • @jonnyvirnig9247
    @jonnyvirnig9247 หลายเดือนก่อน +1

    I don’t know if this will help but for the last paradox, you could just think of it if one ball has infinite points and he cut those infinite points in half both halves will still be infinite so they can both be reconstructedreconstructed into two separate balls

  • @stieli5816
    @stieli5816 หลายเดือนก่อน

    90% counterintuitive logic, but was funi

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      The term "paradox" can refer to a counterintuitive fact.

  • @CookieMage27
    @CookieMage27 หลายเดือนก่อน +9

    The fact I understood and already knew about all of these proves how way to nerdy I am💀💀💀

    • @SweetRollTheif
      @SweetRollTheif หลายเดือนก่อน +2

      *way too nerdy

    • @CookieMage27
      @CookieMage27 หลายเดือนก่อน +1

      @@SweetRollTheif **squints** thats a typo

    • @simpli_A
      @simpli_A หลายเดือนก่อน +1

      I mean. With a healthy dose of vsauce and… apparently huggbees? Im pretty sure ive become omnipotent

    • @CookieMage27
      @CookieMage27 หลายเดือนก่อน +1

      @@simpli_A ahhhhhhhhhhh AHHHHHHH *AHHHHHHHHHHHHH* OMNIPOTENTENCE HAS BEEN ACHIEVED

    • @funiculifunicula
      @funiculifunicula หลายเดือนก่อน +1

      Can you simplify Banach tarsky

  • @bumbleandsimba
    @bumbleandsimba หลายเดือนก่อน +1

    6.28... m 0:29

  • @ThoughtThrill365
    @ThoughtThrill365  หลายเดือนก่อน +10

    To try everything Brilliant has to offer-free-for a full 30 days, visit brilliant.org/ThoughtThrill/ . You’ll also get 20% off an annual premium subscription.

    • @arcturuslight_
      @arcturuslight_ หลายเดือนก่อน +3

      Did you use the wrong sphere inversion video on purpose, you memester? XD

    • @Animedits4876
      @Animedits4876 หลายเดือนก่อน

      @@arcturuslight_ *

    • @Fire_Axus
      @Fire_Axus หลายเดือนก่อน

      monster

  • @HarryLarsson-b2n
    @HarryLarsson-b2n หลายเดือนก่อน

    how is the coin one a paradox?

  • @FoxDog1080
    @FoxDog1080 หลายเดือนก่อน

    I think it was a foot
    I was wrong

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      You thought what was a foot?

    • @FoxDog1080
      @FoxDog1080 หลายเดือนก่อน

      @@isavenewspapers8890 I honestly don't know

  • @Fire_Axus
    @Fire_Axus หลายเดือนก่อน

    where is the paradox in the first one?

  • @s.p.rsuperman407
    @s.p.rsuperman407 หลายเดือนก่อน +1

    im here to leave a comment before you are famous

  • @izzmus
    @izzmus หลายเดือนก่อน +1

    Only the last one was a paradox, the others were just ways that intuition doesn't akways line up with math.Especially the first one.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน +1

      1) Counterintuitive facts can be referred to as paradoxes. This is a well-established usage of the term, and most people understand it. Stop fighting language.
      2) How does the Banach-Tarski paradox not fall into the same category as the other four? To me, it just sounds like you're saying, "That's the only one I don't understand, therefore it can't be true."

  • @mrjoe332
    @mrjoe332 หลายเดือนก่อน

    8:30 EASY!!! you just have to kiss your sister

  • @anywallsocket
    @anywallsocket หลายเดือนก่อน

    Bro TAU!? This gotta be bait 😂

  • @theorasmussenbauer
    @theorasmussenbauer หลายเดือนก่อน +1

    Wow chat I’m 1000 view

  • @MadamCaso
    @MadamCaso หลายเดือนก่อน

    A lot of these aren't paradoxes they're just basic math

    • @c.jishnu378
      @c.jishnu378 25 วันที่ผ่านมา

      Paradoxes have 3 types.

  • @Enderguy57
    @Enderguy57 20 วันที่ผ่านมา

    klein bottle

  • @bubblecast
    @bubblecast หลายเดือนก่อน +1

    Tau :(
    Why?
    Why?
    Why distract from the already nice rope trick?

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน +1

      I can't really tell why you said "why" three times.
      Anyway, how is it a distraction? It's directly relevant to the math at hand, so I don't know what you're talking about.

    • @bubblecast
      @bubblecast หลายเดือนก่อน

      @@isavenewspapers8890 Relax. I said "why" pi times :)

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      @@bubblecast That makes no sense.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      @@bubblecast Also, you didn't answer my question.

    • @bubblecast
      @bubblecast หลายเดือนก่อน

      @@isavenewspapers8890 my bad, shouldn't have expected you to grok it

  • @DylanSargesson
    @DylanSargesson หลายเดือนก่อน +2

    I struggle to see how the staircase one is a paradox. It's obvious that a jagged line is longer than a straight line (no matter how small those jags are).

    • @benjaminhill6171
      @benjaminhill6171 หลายเดือนก่อน +1

      It's only called a paradox because to some people it's unintuitive that the two methods don't lead to the same answer. There's no logical contradiction in the situation, it's just a bit surprising, so it's a weaker kind of paradox.

    • @DylanSargesson
      @DylanSargesson หลายเดือนก่อน +2

      @@benjaminhill6171 Coming from a background of philosophical logic, I've never liked the concept of "weaker forms of paradox", but I do accept that's a definition that is commonly used.
      My problem here is that I don't think this case even fits that weaker type of definition. Perhaps others think differently, but it isn't unintuitive to me. A jagged line between two points is always longer than a straight line between those same points, and the limit of a jagged line is still a jagged line.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      ⁠@@DylanSargesson Ah, but that's where you actually *don't* understand. The limit of the sequence of jagged paths-well, they're technically called curves-is not a jagged curve itself; it is really, truly the actual diagonal line segment. This can be shown using the formal definition of a limit.
      If you're familiar with the definition of the limit L of a sequence of numbers, that states that for every choice of ε > 0, you can eventually get far enough in the sequence that no number in the sequence ever gets more than a distance of ε away from L ever again. We can do a similar thing with a the limit L of a sequence of curves, where whatever number you choose for ε > 0, I can eventually get to a part of the sequence where from here on out, the curves deviate from L by no more than a distance of ε. This is indeed the case for our staircase sequence.

    • @benjaminhill6171
      @benjaminhill6171 หลายเดือนก่อน

      @@isavenewspapers8890 However, the sequence of lengths of these curves converges to (and just always is) 2. The length of the approximating curve is 2 at every step. What I'm saying is that, ultimately, even though by your definition of convergence the jagged edge curve does converge to a diagonal, its length clearly doesn't converge to the length of the diagonal. I guess to me that's the real paradox. I hadn't thought of it in that way before, so that's interesting.

    • @stevenfallinge7149
      @stevenfallinge7149 หลายเดือนก่อน +1

      It's a paradox because it disproves that you can take lengths by bounding curves to be close to the original curve, which one might naively assume if you didn't see this paradox. All paradoxes are exactly that: something that disproves something one might naively assume (for example, Russel's paradox disproves that you are allowed to form sets using unrestricted comprehension, and so on).

  • @fatmonkey4306
    @fatmonkey4306 4 วันที่ผ่านมา

    First one is very stupid

  • @MC5677
    @MC5677 หลายเดือนก่อน

    huggbees :)

  • @j.21
    @j.21 หลายเดือนก่อน

    a

  • @thefunseeker9545
    @thefunseeker9545 หลายเดือนก่อน +1

    These aren’t paradoxes, they’re mathematical fallacies

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน +1

      These are indeed paradoxes-specifically veridical paradoxes, things that are true but sound false. However, they are not fallacies, as that implies that they are false.

  • @joshualeopior9019
    @joshualeopior9019 หลายเดือนก่อน

    Bro the first one isnt even a paradox i mean look how big earth is and then you lift it by one meter your animation is the only confusing part about it good try man but that video is an f.

    • @isavenewspapers8890
      @isavenewspapers8890 หลายเดือนก่อน

      Diagram not to scale, obviously. Did you want a to-scale version where the change wasn't even visible? That doesn't make much sense. And is that the only thing affecting your judgement of the video?

  • @Zakariaazzaim
    @Zakariaazzaim หลายเดือนก่อน +3

    First from morocco😙😙

  • @elunedssong8909
    @elunedssong8909 หลายเดือนก่อน

    Why is the last one not called the "disproof of the axiom of choice"?

    • @Galinaceo0
      @Galinaceo0 หลายเดือนก่อน +5

      Because it doesn't disprove it?

    • @elementgermanium
      @elementgermanium หลายเดือนก่อน +3

      It doesn’t disprove it. Ordinarily transformations preserve volume, but the loophole that makes the theorem work is that this doesn’t hold if your pieces aren’t measurable by volume.
      So you can’t go from 1 to 2, but you CAN go from 1 to N/A to 2

    • @benjaminhill6171
      @benjaminhill6171 หลายเดือนก่อน +2

      Also, you simply can't disprove an axiom. 😂

    • @elunedssong8909
      @elunedssong8909 หลายเดือนก่อน

      @@elementgermanium Makes sense. But then it calls into question the validity of the proof. A point and a line are "breathless" things in the first place. If the proof works why does it depend on the axiom of choice? Shouldn't it work without it?

    • @elunedssong8909
      @elunedssong8909 หลายเดือนก่อน

      @@benjaminhill6171 True, but i mean that if such an axiom gives us something impossible, then its clearly not compatible with anything the deals with the real world.
      ie: its a bad axiom.