Can you Pass Harvard University Admission Interview ?

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 พ.ย. 2024

ความคิดเห็น • 10

  • @TomSkinner
    @TomSkinner หลายเดือนก่อน +8

    Why not take the log of both sides in the first place. Then you get x=log75/log45

    • @dan-florinchereches4892
      @dan-florinchereches4892 หลายเดือนก่อน

      I would say you obtain x ln(45)=ln(75) x( ln 9+ ln5)=ln3+ln25
      x=(ln3+2ln5)/(2ln3+ln5) let y=ln5/ln3 then x= (1+2y)/(2+y)
      substitute into required relation:
      2+4y-2-y
      -------------
      2+y
      (2x-1)/(x-2)= -------------- = 3y/(-3)=- ln5/ln3
      1+2y-4-2y
      ---------
      2+y
      And I would stop there because i have aversion to calculators lol

  • @lourdesgracia6767
    @lourdesgracia6767 หลายเดือนก่อน +1

    X = log 75 ÷ log 45

  • @moseskimani7742
    @moseskimani7742 หลายเดือนก่อน

    The equation was too hard for him hence he run away😂😂

  • @CharlesChen-el4ot
    @CharlesChen-el4ot หลายเดือนก่อน

    45^x-1 = 5/3 = 10/6
    (x-1)* log 45 = 1-log6
    x -1 = (1-log6)/log 45
    x = (1+log 45-log6)/log45
    x = (1+log5+log3 -log2)/log45
    = (2+log3-2log2)/
    (1+log3-log2)
    = 1 - log2/(1+log 3/2)

  • @saschavogt5083
    @saschavogt5083 หลายเดือนก่อน

    I don’t understand. What‘s the value of x?

    • @musicsubicandcebu1774
      @musicsubicandcebu1774 หลายเดือนก่อน

      It doesn't matter, that wasn't the question. Though you can find x first then sub into (2x-1)/(x-2).

    • @andretewem3385
      @andretewem3385 หลายเดือนก่อน

      Solutions in |C = ( 2.ln(5)+ln(3) ) / ( 2.ln(3)+ln(5) )
      + i.2.k.pi/( 2.ln(3)+ln(5) )
      with k € Z.
      With k = 0 we get solutions in |R : X = ln(75) / ln(45)

  • @walterwen2975
    @walterwen2975 หลายเดือนก่อน +1

    Harvard University Admission Interview: 45ˣ = 75, (2x - 1)/(x - 2) =?
    45ˣ = 75, x > 0
    First method:
    Straight forward solution;
    log(45ˣ) = log75, x = log₄₅75 = 1.1342
    (2x - 1)/(x - 2) = [2(1.1342) - 1]/(1.1342 - 2) = 1.2684/(- 0.8658) = - 1.4650
    Second method:
    45ˣ = (9ˣ)(5ˣ) = (3²ˣ)(5ˣ) = 75 = (3)(25) = (3)(5²), (3²ˣ)/(3) = (5²)/(5ˣ)
    3²ˣ⁻¹ = 5²⁻ˣ = (1/5)ˣ⁻², log(3²ˣ⁻¹) = log[(5⁻¹)ˣ⁻²], (2x - 1)log3 = (x - 2)log(5⁻¹)
    (2x - 1)/(x - 2) = - log₃5 = - 1.465; 2x - 1 = - 1.465(x - 2), x = 1.134
    Answer check:
    45ˣ = 45¹·¹³⁴ = 75; Confirmed
    The calculation was achieved on a smartphone with a standard calculator app
    Final answer:
    (2x - 1)/(x - 2) = - log₃5 = - 1.465