Sequences | 2 and 3 Markers | Mathematics Olympiad Preparation | IOQM 2023 | Abhay Sir | VOS

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ต.ค. 2024

ความคิดเห็น • 10

  • @LostinCosmos57
    @LostinCosmos57 2 หลายเดือนก่อน

    Thanks sir,amazing session..learnt a lot😊..

  • @RoySaldanha
    @RoySaldanha ปีที่แล้ว +1

    Sir at 1:05:39, instead of using 2√2+2 in the denominator, we can also write 2√2-2 right (√4=+2 or -2)? This will maximize the value even more.

  • @hecker6213
    @hecker6213 ปีที่แล้ว +1

    Sir it will be very helpful if you can upload pdf of every session u took this yr for ioqm pls

  • @ravitripathy2479
    @ravitripathy2479 ปีที่แล้ว

    Hello sir I am sorry for missing the class (I am adi this is my alternate account)
    Observe the inner term sigma (k / 2^(n+k)) can be written as (1/2^n(sigma k/2^k))
    Clearly forms an agp
    Let sigma (k/2^k) = s
    Then s= 1 + 2/2^2+ 3/2^3+ 4/2^4….. (n-1)/2^(n-1)
    While s/2= 1/2^2 +2/2^3+ 3/2^4….. (n-1)/2^(n)
    So s-s/2 = s/2= 1 + 1/2 +1/2^2 …… 1/2^(n-1) -(n-1)/2^n
    = 1((1/2)^n -1)/1-1/2 = (1/2)^n-1 -2
    So when we take the second summation we get
    Sigma ( (1/2)^n-1 -2 - (n-1)/2^n)
    Observe that this is equal to
    1/2^n-1 -2 -2n -1/2((1/2)^n-1-2-

    • @ravitripathy2479
      @ravitripathy2479 ปีที่แล้ว

      Will post the rest of the solution tomorrow sir

  • @Mokshith255
    @Mokshith255 ปีที่แล้ว

    Hi Sir,
    The book which you have published will take almost 2 weeks to reach my house,Can you try to reduce the number of days it will take to deliver?
    Can you launch a pdf version on the app?
    Please do something Sir
    Thank you

  • @vishalchaurasiya2724
    @vishalchaurasiya2724 ปีที่แล้ว

    Ioqm ka test ka camp jee wale bi le skte hai sir