Can You Solve This Problem From 𝗝𝗘𝗘 𝗠𝗮𝗶𝗻 𝟮𝟬𝟮𝟰, 𝟮𝟵𝘁𝗵 𝗝𝗮𝗻 - 𝗦𝗵𝗶𝗳𝘁 𝟮

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 พ.ย. 2024

ความคิดเห็น • 697

  • @AbhinavRaj-j6r
    @AbhinavRaj-j6r 9 หลายเดือนก่อน +719

    Kya solution h 🥶🥵
    My respect for aman malik sir 📈📈📈📈

    • @pratyakshYT95.5
      @pratyakshYT95.5 9 หลายเดือนก่อน +4

      Bhai ye common problem hai

    • @pratyakshYT95.5
      @pratyakshYT95.5 9 หลายเดือนก่อน +4

      Yeh amazing soln nhi hai

    • @pratyakshYT95.5
      @pratyakshYT95.5 9 หลายเดือนก่อน +2

      There are better methods

    • @pkstudy349
      @pkstudy349 9 หลายเดือนก่อน

      tum ek method bata do
      @@pratyakshYT95.5

    • @SN8-v8h
      @SN8-v8h 9 หลายเดือนก่อน

      @@pratyakshYT95.5 btao better method...mujhe to ye wala mast laga

  • @Aqcalamity
    @Aqcalamity 9 หลายเดือนก่อน +439

    in my paper i figured out the solution x=45 y=1 by hit and trial as 45 square was nearest to 2023 but i was not sure that it was the only solution so i left the question , great analysis by you sir

    • @Hxkhxh
      @Hxkhxh 9 หลายเดือนก่อน +23

      Mene bhi same yahi hit Kia but 30 seconds me hi question skip karke aage badh gya tha

    • @mayureshchaudhary8238
      @mayureshchaudhary8238 9 หลายเดือนก่อน +11

      Mujhe toh yaad hi nhi aisa koi question tha paper mein? Meri bhi same shift thi

    • @piyushshakit7646
      @piyushshakit7646 9 หลายเดือนก่อน +5

      I think udhar x and y belongs to n nhi tha

    • @piyushshakit7646
      @piyushshakit7646 9 หลายเดือนก่อน +6

      Aur isliye ek aur possible case bnega -45 wala

    • @randompersononthenet806
      @randompersononthenet806 9 หลายเดือนก่อน +3

      question different tha kuch complex numbers se related tha jitna yaad hai

  • @Rishabh-ty1vx
    @Rishabh-ty1vx 9 หลายเดือนก่อน +181

    🛐🛐🛐🛐
    What a mind blowing solution!
    This channel is very underrated...

  • @PadhleVansh
    @PadhleVansh 9 หลายเดือนก่อน +111

    Aman sir, aapne aise solutions le aate ho saamne ki dekh kr maza aa jaata hai, aap jaisa teacher maine shayad hi dekha hai

  • @Unknown10446
    @Unknown10446 9 หลายเดือนก่อน +97

    x=45, y=1 (by hit and trial).

    • @aryankhanderia2216
      @aryankhanderia2216 8 หลายเดือนก่อน +2

      Frrr same i did

    • @aayushjawalekar4169
      @aayushjawalekar4169 7 หลายเดือนก่อน +2

      NAH, IF it's mcq then only it can happen

    • @AmanK-j2c
      @AmanK-j2c 7 หลายเดือนก่อน +2

      @@aayushjawalekar4169 Why would it not work lmao it's literally an answer and if it's wrong then the question can't be right

    • @MathematicalGalaxy
      @MathematicalGalaxy 4 หลายเดือนก่อน

      ​@@aayushjawalekar4169 No bro, if you can explain the analytical reason for your approach by hit and trial in subjective paper then also it's acceptable 😊

  • @Padhlejee
    @Padhlejee 9 หลายเดือนก่อน +35

    Sir I tried another method, if we make this equation like this: 2^y+2-2+2023 = x²
    =>2(2^(y-1) - 1)+2025=x²
    Now x will be:
    => √2(2^(y-1) - 1)+2025
    So now as 2025 is a perfect square and its clearly visible that making y=1 will make the value 2(2^(y-1) - 1) =0 hence we can say x=45 and y=1
    Thanks sir👍

    • @reddropgamingyt4965
      @reddropgamingyt4965 9 หลายเดือนก่อน

      Nicee

    • @Koko_FC
      @Koko_FC 9 หลายเดือนก่อน

      🤌✨✨❤

    • @alaminshabyashachi742
      @alaminshabyashachi742 8 หลายเดือนก่อน +2

      This solution only proves y=1 is a solution. It does not prove that y=1 is the only solution.

    • @chandranisahanone
      @chandranisahanone 8 หลายเดือนก่อน

      It's giving u single value for it; But not a complete proof!

    • @Tanmay-x5b
      @Tanmay-x5b 8 หลายเดือนก่อน

      Same ways I solved it😊.

  • @eeriedarnell
    @eeriedarnell 8 หลายเดือนก่อน +5

    What a way of solving this, since I'm in my graduation but still I like to solve these JEE sums. Great explanation sir.

  • @VidhuTrivedi12
    @VidhuTrivedi12 9 หลายเดือนก่อน +9

    I always love the solution when there is no loss of generality. Great solution sir.

  • @PAPAJEE-dk6lg
    @PAPAJEE-dk6lg 9 หลายเดือนก่อน +605

    MATHS IS NOT A SUBJECT IT IS FEELING

    • @SaurabhYadav-t1d9d
      @SaurabhYadav-t1d9d 9 หลายเดือนก่อน +27

      Ha bhai mera bhi favourite subject hai

    • @sudhansusekharbarik6401
      @sudhansusekharbarik6401 9 หลายเดือนก่อน +8

      ❤❤

    • @sathwikandsanthosh2459
      @sathwikandsanthosh2459 9 หลายเดือนก่อน +12

      My favourite subjects are maths and physics ❤❤❤❤

    • @SuyashSingh-br7kc
      @SuyashSingh-br7kc 9 หลายเดือนก่อน +6

      It's love bro

    • @shazolbormon7949
      @shazolbormon7949 9 หลายเดือนก่อน +5

      If you treat it like subject then you cannot understand it.😊

  • @viveksingh7813
    @viveksingh7813 9 หลายเดือนก่อน +45

    Mathematics is a language of God ❤😊

  • @faheem4977
    @faheem4977 9 หลายเดือนก่อน +21

    Take modulo 4 assuming y>1 since x^2=-1 not possible since squares are either 0 or 1 mod 4 now this implies y=0 or 1,so you get the answer
    PS:This only works since x and y are naturals

    • @krrishrohilla2945
      @krrishrohilla2945 8 วันที่ผ่านมา

      take modulo 4 to thik hai
      par uske aage jo likha hai vo samaj nhi aa rha
      maine modulo 4 karke try kara and usse answer shi aa rha hai
      x^2=-1 ka kya meaning hai iss line mein
      y=0or 1 wali condition meri bhi aa rhi hai
      par x wali condition match nhi ho rhi

    • @faheem4977
      @faheem4977 6 วันที่ผ่านมา

      @@krrishrohilla2945 take modulo 4 on both sides 2023 leaves a remainder of -1 or 3 from 4 but that is not possible for a perfect square so y=1
      \\

    • @yugantar01
      @yugantar01 3 วันที่ผ่านมา

      Mene bhi exactly same thought se Kiya ❤

  • @dhruvpandey001
    @dhruvpandey001 9 หลายเดือนก่อน +15

    this question don't demand any concept from any chapter of the syllabus just pure common sense, indeed a good question

    • @thevibetree1
      @thevibetree1 7 หลายเดือนก่อน +1

      It was a basic level olympiad question from prmo diophantine equation

    • @KUMAR_ALOK_JEE2024
      @KUMAR_ALOK_JEE2024 7 หลายเดือนก่อน +1

      ​@@thevibetree1 Seriously

    • @Premium_Youtube_User
      @Premium_Youtube_User 4 หลายเดือนก่อน +3

      ​@@KUMAR_ALOK_JEE2024kbhi olympiads nhi diya hai kya? 11th jee se tough maths 9th ioqm wagera me hota hai

  • @Halwahaikya-l4v
    @Halwahaikya-l4v 9 หลายเดือนก่อน +13

    Kya solution hai sir🔥🔥😯 ekdum bhannat🔥🔥

  • @k0u0s0h0a0g0r0a0
    @k0u0s0h0a0g0r0a0 8 หลายเดือนก่อน +1

    However, there is one step without any rationale : subtracting one. We need a structural, and a much more elegant solution. I have one, as follows:
    I did it in the following way:
    x^2 - 2023 = 2^y.
    1. First, LHS > 0. So, x > sqrt(2023). This gives the minimum value of x = 45.
    2. For x = 45, x^2 - 2023 = 2025 - 2023 = 2
    3. Even number cannot be the answer because RHS is odd.
    4. Consider next number: 47. 47^2 - 45^2 = (47+45)(47-45) = even * even, which contains 4 as a factor. Add 2 to it, and it definitely does not contain 4 as a factor. So, 2^y will never have 4 as a factor. For example, in this case, 47^2 - 2023 = 184 + 2 = 186, which is not divisible by 4. This applies to all upcoming numbers (since new number square is greater than that of existing number by a number divisible by 4) So, Y can only be (0, 1). 0 does not satisfy, so Y = 1

  • @skanda3341
    @skanda3341 8 หลายเดือนก่อน +26

    I solved this in my mind in 5 seconds, u see there is a trick for perfect squares of numbers with unit digit having 5 , so 5² =25, 15² = 1×2 ,25 = 225 (we are doing 1×2 since ten's place is occupied by 1 and then we multiplt it by successive number) , 25² = 2×3,25 =625 , 35² = 3×4,25=1225 , 45² = 4×5,25 = 2025 , there we go we got 2025 now in lhs , 2ⁿ + 2023 we need to find the value of the power of 2 to make it 2025 if u look carefully the power should be 1 to make it 2023+2=2025 , now x is 45 ,y is 1 therefore x+y= 46 simple and very easy no need to waste 6 minutes lol

    • @IIT.68
      @IIT.68 7 หลายเดือนก่อน +1

      Yes bro 😂😂😂same thinking.What a coincidence.Class 9th mind same

    • @SaranshxReX
      @SaranshxReX 7 หลายเดือนก่อน

      Us Bhai Us

    • @Wanderer-dd4mj
      @Wanderer-dd4mj 6 หลายเดือนก่อน +1

      Agar subjective me ata to?

    • @skanda3341
      @skanda3341 6 หลายเดือนก่อน

      @@Wanderer-dd4mj it will never come , there's no chapter which has these types of question in ncert. Ncert is either too childish , or too hard

    • @chipixe9326
      @chipixe9326 4 หลายเดือนก่อน

      Ong same bhai

  • @kiruba8461
    @kiruba8461 8 หลายเดือนก่อน +3

    The very instant I saw 2023 and x², I rewrote it as 2025-2 because 2025 is 45², rearranged it as (x-45)(x+45) = 2(2^(y-1) -1). Rest is just deducing lhs and rhs as even or odd

  • @MegaSethi
    @MegaSethi 9 หลายเดือนก่อน +2

    Gave JEE in 2011 but man what a solution to this beautiful question. Just randomly youtube recommended me your video

  • @philomath69
    @philomath69 9 หลายเดือนก่อน +3

    X= 45 and Y = 1
    Hit and trial...
    Better for ioqm beginner question

  • @SiddharthSingh-pq1ry
    @SiddharthSingh-pq1ry 9 หลายเดือนก่อน +41

    jo log IOQM ki thodi bhi taiyari kiye hey unke liye bahut hi jyada asaan tha

    • @prashant34049
      @prashant34049 9 หลายเดือนก่อน +3

      Pata nahi jee coaching Wale number theory kyon nahi padhate

    • @monujhembrom9279
      @monujhembrom9279 9 หลายเดือนก่อน +1

      Diophantine eqn. Right

    • @sirak_s_nt
      @sirak_s_nt 9 หลายเดือนก่อน

      @@prashant34049 star batches me number theory ke basics padhate h and geometry me RMO ke pyq and Pathfinder krwate..

    • @ThorfinnBus
      @ThorfinnBus 9 หลายเดือนก่อน

      ​@@prashant34049 mostly nobody teach

    • @jayIITbhu
      @jayIITbhu 9 หลายเดือนก่อน

      Bhai tune kiya kaise diophantine ​se
      Kidhar kagaya modulo
      Elsborate krega mera to aa hi nai rha
      @@monujhembrom9279

  • @firetargamingz7057
    @firetargamingz7057 9 หลายเดือนก่อน +18

    🤯🤯🤯🤯🤯 mind blowing sol.
    This is why i tell to my freinds that you are the one who is giving me ideas.

    • @SKYLORD6905
      @SKYLORD6905 9 หลายเดือนก่อน

      Use both side log you can see directly

    • @user-hs3ne3ms5b
      @user-hs3ne3ms5b 9 หลายเดือนก่อน

      ​@@SKYLORD6905please provide solution using log

    • @mukul9221
      @mukul9221 9 หลายเดือนก่อน

      ​@@SKYLORD6905 Log 2023?

    • @SKYLORD6905
      @SKYLORD6905 9 หลายเดือนก่อน

      @@mukul9221 no use x²-2023 then take log then use log property tumhe kuch gadbad dikhheji kyuki ayega log(ײ-2025) ayega agr x=45 dal doge toh log define hi nhi hoga

  • @soumabhopal9901
    @soumabhopal9901 9 หลายเดือนก่อน +15

    Mera shift
    Ques me summation of all possible x and y puchatha. Thank you sir legendary soln...

    • @utkarshpandey01
      @utkarshpandey01 9 หลายเดือนก่อน

      29th shift 2 me tha yeh?

    • @soumabhopal9901
      @soumabhopal9901 9 หลายเดือนก่อน

      @@utkarshpandey01 yess

    • @utkarshpandey01
      @utkarshpandey01 9 หลายเดือนก่อน

      @@soumabhopal9901 kon sa question tha

    • @garvitsinghal3846
      @garvitsinghal3846 9 หลายเดือนก่อน

      Yaha par x, y € N tha ya R

    • @garvitsinghal3846
      @garvitsinghal3846 9 หลายเดือนก่อน

      Kyunki R mein toh ans 2 ho jayega

  • @shalvagang951
    @shalvagang951 9 หลายเดือนก่อน +5

    Sir simple agar ham mod 4 kare to we know that every perfect square is 0,1 mod 4 and if we claim that y>2 then 2^y would be 0 mod 4 and 2023 is 3 mod 4 which is not possible and hence y

    • @aryanyadav1313
      @aryanyadav1313 9 หลายเดือนก่อน

      Exactly, simple ioqm examples lol

    • @sonorousgaming7202
      @sonorousgaming7202 8 หลายเดือนก่อน

      which chapter is it from? number theory?

  • @abhaykumar7626
    @abhaykumar7626 8 หลายเดือนก่อน +2

    Sir 45 ka square 2025 hota hai.
    Agar hum x ki jagah 45 rakhe aur aur y ki jagah 1 tho dono barabar ho jaenge
    Answer - 45+1 = 46
    😅 Hit and trial se kiya

  • @AnikMondal-nv8gd
    @AnikMondal-nv8gd 9 หลายเดือนก่อน +2

    Normal Application of Number Theory in Math Olympiad(Divisibility Theory)

  • @SDB_Safal_Math_1729
    @SDB_Safal_Math_1729 9 หลายเดือนก่อน +1

    One Liner, if y>2 then mod 8 gives x^2=-1(mod 8), which gives no solution to x. Then only possible values are 0

    • @夜神月-l8q
      @夜神月-l8q 9 หลายเดือนก่อน +1

      Congruence modulo is not in jee syllabus -_-. But number theory can be also used .

    • @SDB_Safal_Math_1729
      @SDB_Safal_Math_1729 9 หลายเดือนก่อน

      @@夜神月-l8q I am sad that congruence modulo is no longer in number theory. - _ -. Jokes apart, I think you can try by divisibility of 8 ignoring modulos, provided even sufficient amount of time is there to develop the concept of modulo, by ourselves in exam hall. Lol😂😂😂

  • @Lucifer-pj8vc
    @Lucifer-pj8vc 9 หลายเดือนก่อน +1

    Sir there can be one more easy solution
    We can write it as 2^y=x²-2023
    Here we can conclude that 2^y will always be even untill y is not 0 , So taking the case when y is not zero then we can say that 2^y will always be even and+ive and hence x²-2023 has to be even and first of all x² term has to be greater than 2023 for term to be +ive so simply x is greater than 44²(1936) as 45² is 2025
    And if we just take a hit and trial in this we can get that at x=45 , 2^y is 2 which is even and +ive and no number below this exist there can be above that but 2^y can't be less than 2 ( taking case of y is not equal to 0 and y is real natural number as give in question ) So we have 2^y=2 and hence y =1
    So this method can also be used I think I don't whether this method is convenient or not but I just tried becz you inspire me to try different approaches you are my real inspiration sir❤❤ thanks for all I learned about maths is bhannaaaattt😅❤❤❤❤

  • @KunalIngle-1712
    @KunalIngle-1712 4 หลายเดือนก่อน +1

    What a beautiful solution sir and the beauty of maths damnnn !!!!

  • @sirak_s_nt
    @sirak_s_nt 9 หลายเดือนก่อน +12

    It obvious and trivial that x, y = 45,1 is a solution. In general if y≥3, taking mod 8
    x²= 0,1, 4 mod 8 and 2^y +2023 = -1 = 7 mod 8. Thus the modular equation is contradicted. Therefore, y≤2. Taking y = 2 gives 2027 which is not a perfect square. Therefore 45,1 is the only solution set.

    • @HoldOnItwillGetBetter
      @HoldOnItwillGetBetter 9 หลายเดือนก่อน +1

      wrong h
      45,1 is the true solution daal ke check krlo

    • @icyy9864
      @icyy9864 9 หลายเดือนก่อน +1

      Galat hai 45 and 1

    • @sirak_s_nt
      @sirak_s_nt 9 หลายเดือนก่อน +4

      @@HoldOnItwillGetBetter are ha ik galti se type ho gya mene & y = 2 me 2027 value ko already soln me reject kiya hua h

    • @thelastpersononearth9765
      @thelastpersononearth9765 9 หลายเดือนก่อน

      Whi itna easy q kaise aagya but shyd exam temperament me bachha confuse hosakta hai.

  • @nigamjha2290
    @nigamjha2290 8 หลายเดือนก่อน +1

    Felt in love with maths again sir. Koti koti naman Aman sir❤

  • @sairajbansode2740
    @sairajbansode2740 9 หลายเดือนก่อน +34

    Ye to sabse basic question hai hit and trial se hogya
    Really ye sachme aya tha mains me
    Sidhe y=1 rakhoge to 2025 kiska square hai 45 ka x=45 hogya
    Dono natural number hai khtm😂😂

    • @aravindvarathra346
      @aravindvarathra346 9 หลายเดือนก่อน +10

      Ha ye ese question hote h ki dekh ke phli bari me click kra toh ho gya
      ... Vrna exam pressure me Kbhi kbar soch ni pate

    • @RishabhSingh-mv6um
      @RishabhSingh-mv6um 9 หลายเดือนก่อน

      Are you actually that dumb
      What jf more pairs of x and y could exist
      Clearly you do not have the iq level to solve this in the exam room
      Question had asked all the possible pairs of x and y
      Everyone could only predict a single possibility of y=1 and x=45
      What if there were more
      You cant take risks

    • @vanshgupta6454
      @vanshgupta6454 9 หลายเดือนก่อน

      Matrix Wale ka kya tha ans ......

    • @sairajbansode2740
      @sairajbansode2740 9 หลายเดือนก่อน

      @@vanshgupta6454 tumhara shift konsa tha aur exactly kya question tha wo batao fir ans bata dunga Mera 27shift 2 tha

    • @champu823
      @champu823 9 หลายเดือนก่อน

      Haa isse ho jata hai aise competitive setting mein
      But it doesn't hurt to know the full beauty of the question

  • @hellgod1809
    @hellgod1809 9 หลายเดือนก่อน +2

    This is also called solution by parity. Olympiads preparers would have found this extremely easy

  • @Tsarthak
    @Tsarthak 9 หลายเดือนก่อน +2

    First I want to answer before seeing solution if we put y=1 then rhs become 2025 which is sq of 45 so x=45 then
    X+y= 46
    It hit me when I was looking at squares ending with 25 which are generally of numbers ending with 5
    Sir and others fellow students pls verify

    • @ERROR05693
      @ERROR05693 9 หลายเดือนก่อน

      Nice concept

  • @sbsharvani
    @sbsharvani 9 หลายเดือนก่อน +8

    What an analysis ... really fantastic.. Great Aman ji

  • @yugshende3
    @yugshende3 8 หลายเดือนก่อน +1

    This question is so amazing. Solving it with this method is even more amazing

  • @maan4819
    @maan4819 8 หลายเดือนก่อน +1

    Sir aap great ho kasam se itna accha explanation kisi ka nahi dekha hoga maine

  • @sanjaytopiya4516
    @sanjaytopiya4516 หลายเดือนก่อน

    It can be done easily
    x²-2023=2^y
    Take log base 2 both side ,as x and y are natural number
    There is only one possibility that is x=45 and y=1

  • @Veer.Thakkar
    @Veer.Thakkar 9 หลายเดือนก่อน +2

    Though I'm in 9th class, this question felt too easy. I just first tried to find square root of 2023 which was around 44 and after that we have to add a factor of 2 to make it a perfect square and square of 45 is 2025 which is 2023+2 so y = 1 and x = 45 and as it is given that y and x both are natural numbers so no ±45=x. Therefore, x+y = 45+1 =46

    • @divi7117
      @divi7117 9 หลายเดือนก่อน

      for real this was more of a logical one

    • @adityagoel5746
      @adityagoel5746 2 หลายเดือนก่อน

      @@divi7117 bhai tum naye log lag rhe ho for IITJEE maths. Teri baat galat nhi he obviously par tu isse ye conclude nhi kar sakta ki x and y ki aur ki possible value nhi he. And sir ne 6 minutes deeply samjhane me lagaye varna seconds me chalta he he dimag. Tujhe abhi bhi doubt lagrha he to check out the video of the author of black book usme dekhle. tumhari galti nhi he tum 9th me ho tumhe idea nhi he IIT waale kabhi bhi koi bhi twist daal dete he question me

  • @Aman_nitb_cse
    @Aman_nitb_cse 9 หลายเดือนก่อน +2

    Physics is love ❤
    But math me everything 🔥🔥

  • @Raunaky-28exam
    @Raunaky-28exam 7 หลายเดือนก่อน +1

    Sir, Apne aisa samjhaya ki mai class 9th ka student isko samajh gaya.

  • @nagasaiprajith2302
    @nagasaiprajith2302 9 หลายเดือนก่อน +2

    Its a very very easy question, but maybe not in the exam!!!

  • @praveenashomelife8127
    @praveenashomelife8127 8 หลายเดือนก่อน +1

    First when i saw this qiestion i took the values of perfect square greater that 2023 which is 2025 =45²
    i.e x=45 and y=1

  • @pranavtiwari_yt
    @pranavtiwari_yt 9 หลายเดือนก่อน +11

    Solution is on spot! I solved it in a different way, like y = log2(x^2 - 2023) now there are two cases, one is either x is very large and after subtracting to 2023 we'll get something again very large to make it power of 2 , but if we see graph of x^2 and 2^x we can see that slope of x^2 after y = 2023 is somewhatt nearly 88deg so if we have to make x^2 very large than 2023 it is not possible because compared to graph of 2^x , x^2 slope is mild at larger values so only possibility is that x^2 is slightly greater than 2023 and 2^x is not large then there slopes would be comparable. for eg: at x =2 slope of x^2 is 4 and slope of 2^x is 2.77

    • @alaminshabyashachi742
      @alaminshabyashachi742 8 หลายเดือนก่อน +1

      The amount of illogical argument in this answer is too damn high!

    • @Yadavbrandsystummm
      @Yadavbrandsystummm 7 หลายเดือนก่อน +1

      Bhai neend puri krle apni

  • @arkapravorajkonwar8020
    @arkapravorajkonwar8020 9 หลายเดือนก่อน +1

    wow what a problem solving, so helpful to know the actual way to solve now i can use these ideas in other different situations too , thank you ! sir!

  • @joysadhukhan2208
    @joysadhukhan2208 9 หลายเดือนก่อน +2

    Sir I want to conclude one thing that you are a person from different planet.❤

  • @uditsharma6509
    @uditsharma6509 5 หลายเดือนก่อน +1

    Maths ko dimag se nhi dil se padha jata h kyuki yeh feeling h❤

  • @PushpendraChaudhary-r7j
    @PushpendraChaudhary-r7j 3 หลายเดือนก่อน +1

    X^2 = 2^y +2025-2
    X*2-2*y=45*2-2*1
    By comparing x =45
    Y = 1

    • @adityagoel5746
      @adityagoel5746 2 หลายเดือนก่อน

      bhai tum naye log lag rhe ho for IITJEE maths. Teri baat galat nhi he obviously par tu isse ye conclude nhi kar sakta ki x and y ki aur ki possible value nhi he. And sir ne 6 minutes deeply samjhane me lagaye varna seconds me chalta he he dimag. Tujhe abhi bhi doubt lagrha he to check out the video of the author of black book usme dekhle.

  • @monikaprakash7135
    @monikaprakash7135 9 หลายเดือนก่อน +2

    Ok that's correct for this question because there is given x is a natural no. But u can't say even * even is div. By 4 or not even 2 because remember 0 is also an even no. That can cause confusion in another questions where it is not given ... Noone noticed it hoping it to be noticed by someone and this confusion should be clear so that maths can be bhannat ❤

    • @hemantgoyal7786
      @hemantgoyal7786 9 หลายเดือนก่อน

      but you can see that x will be an odd number as 2^y will be an even and by adding it with 2023 will result in odd .

    • @theinevitable-brawlstars6794
      @theinevitable-brawlstars6794 8 หลายเดือนก่อน

      0 is divisible by every number

  • @AnjaliYadav-xg2no
    @AnjaliYadav-xg2no 6 หลายเดือนก่อน +2

    my soln
    x^2 = 0, 1 (mod4)
    for y >1 2^y = 0 (mod 4)
    and 2023 = 3 (mod 4)
    therefore, 2^y + 2023 = 3 (mod 4) when y >1
    but x^2 is 0 or 1 ( mod 4)
    which implies that y =1
    for y=1 , x= 45
    this is only soln
    your solution is also amazing sir

    • @kindafool4083
      @kindafool4083 4 หลายเดือนก่อน

      Olympiad wala lag rahe ho.. lol

  • @viditsingh2978
    @viditsingh2978 9 หลายเดือนก่อน +1

    Solution:-
    We know that when a perfect square is divided by 4 it only gives remainder 0 and 1. So x² can only give remainder 0 or 1. On RHS 2023 gives remainder 3 and 2^y can give remainder 1,2 and 0. If it gives remainder 0 then RHS in total will give remainder 3 which is not possible for a perfect square so it must give remainder 1 or 2 as 1+3 will give total remainder 0 and 2+3 will give total remainder 1. That is only possible when y=0 and 1. If we put y=0 we get x=√2024 which is not a natural number. If we put y=1 we get x=45.

  • @saibalgupta9933
    @saibalgupta9933 8 วันที่ผ่านมา

    x+(2^y/2)=289
    x-(2^y/2)=7
    So,by adding,x=148 and 2^y/2=141

  • @shariquearman3142
    @shariquearman3142 9 หลายเดือนก่อน +4

    Although I am in class eight presently but I have solved this problem by using class eight concepts

    • @shilopkala9178
      @shilopkala9178 8 หลายเดือนก่อน

      Can you tell me which concepts?

  • @PanchalSahib-lh2op
    @PanchalSahib-lh2op 9 หลายเดือนก่อน +1

    Sir -44 bhi a skta h
    Kyuki x^2 =2025
    So x =-/+ 45
    And -45+1=-44

    • @RedocReboot
      @RedocReboot 9 หลายเดือนก่อน +1

      X belongs to N h bhai

  • @sirak_s_nt
    @sirak_s_nt 9 หลายเดือนก่อน +9

    Ye jitne bhi log tukka laga rahe hai.. Unke liye
    615 + x²= 2^y. (x, y are non zero integers /can be both negative or positive) Find maximum value of x+y. Lagao isme tukka

    • @bruhyou197
      @bruhyou197 9 หลายเดือนก่อน +1

      ban gaya cool?

    • @sirak_s_nt
      @sirak_s_nt 9 หลายเดือนก่อน +2

      @@bruhyou197 mere se toh bana hi hua tabhi toh diya h 😅

    • @sirak_s_nt
      @sirak_s_nt 8 หลายเดือนก่อน

      @AkshunChauhan-bt6ey x, y = (59, 12) & (-59, 12) so maximum sum is 71, minimum sum is -47

    • @HarishSharma-s7b
      @HarishSharma-s7b 4 หลายเดือนก่อน

      ​@@sirak_s_nt bro us ques me max nahi pucha to possibility hai ki ya to ek solution hai ya fir agar kai solution hoge to unka sum same hona padega so hit and trial is best way in that question

    • @Premium_Youtube_User
      @Premium_Youtube_User 4 หลายเดือนก่อน

      ​@@HarishSharma-s7ba/c to situation

  • @Vabadrish
    @Vabadrish หลายเดือนก่อน

    It took some concept I learned this year for Olympiad prep
    Any square number can be written is the form 4k and 4k+1
    Here X² is odd, thus x²= 4k+1
    We get 4k-2022=2^y
    As there exists only one +ve pair of value of x,y
    y=1, x²=2025
    Thus (x,y)=(45,1)
    Hence ,the req ans is 46

  • @dhruvgupta5489
    @dhruvgupta5489 3 หลายเดือนก่อน

    What a great thinking....maza hi aa gya...tukke se to Mera bhi ho gya..par te analysis dekh ke dil khush ho gya....

  • @夜神月-l8q
    @夜神月-l8q 9 หลายเดือนก่อน +1

    Sir I have an alternate solution,
    As x is a natural number, so unit digit of x² can range from {0,1,4,9,6,5}.
    Coming to RHS, 2^x unit place can be {1,2,4,8,6} adding 3 of "2023" to unit place gives values ranging as {4,5,7,1,9}.
    Digits that get tallied on LHS and RHS are {4,5,9}. Which corresponds to {0,1,4} power of x on RHS, so values of y can be the same.
    For y=0, RHS=2024
    y=1, RHS=2025
    y=4, RHS=2039,
    Of the above cases. Only y=1 satifies the condition, so y=1, and from there we can get value of x as 45.
    So final answer is (45+1)=46.

    • @AaravSingh-qv6cp
      @AaravSingh-qv6cp 9 หลายเดือนก่อน

      my solution is similar to sir's.. and you were lucky to get the right answer as you never proved that there can't be more than one solution...

    • @royKiron1
      @royKiron1 9 หลายเดือนก่อน

      op

    • @夜神月-l8q
      @夜神月-l8q 9 หลายเดือนก่อน

      @@AaravSingh-qv6cp I proved that there are no more solution than this one, look closely

  • @narayansareekuthir5330
    @narayansareekuthir5330 4 หลายเดือนก่อน +1

    If y is greater than or equal to 2 then x^2 is of the form 4k-1 which is not possible so ans=(2025)^1/2+1=46.because we know that every perfect square is of the form (2k+1)^2 or (2k)^2 or 4k+1 or 4k

  • @samarnayak69
    @samarnayak69 9 หลายเดือนก่อน +9

    Sir, alternate method can be,
    taking cases of y
    either y=1 or y>=2
    for y=1,
    you get x=45
    for y>=2
    the RHS becomes a number in the form of 4k+3 where k is a natural no and this format can never be a perfect square.
    Therefore, x+y=46 .
    Exam mein question , find number of ordered pairs and summation of all ordered pairs tha.

    • @_ehh
      @_ehh 9 หลายเดือนก่อน

      4k+3 perfect square nahi hai yeh kaisa pata chala?

    • @sleha4106
      @sleha4106 9 หลายเดือนก่อน

      ​@@_ehh (x^2)-3 isn't divisible by four

    • @sirak_s_nt
      @sirak_s_nt 9 หลายเดือนก่อน

      @@_ehh class 10 NCERT🙌

    • @lamshywy8920
      @lamshywy8920 9 หลายเดือนก่อน

      ​@@sirak_s_nt Iss sal class 10 NCERT se ye sari cheez remove ho gai hai 😭

    • @sirak_s_nt
      @sirak_s_nt 9 หลายเดือนก่อน

      @@lamshywy8920 wo NTA ki problem nahi h.. Ye bohot hi basic baate h ki perfect squares 4k, 4k+3, 8k, 8k+1, 8k+4, 16k, 16k+4, 16k+8, 16k+1, 7k+2, 7k, 7k+1 7k+4 etc form h hote. Prime number 6k+5, 6k+1, 4k-1, 4k+1 form ke hote. Khud se bhi pta ki jaa skti h

  • @vaishalimuneshwar1803
    @vaishalimuneshwar1803 9 หลายเดือนก่อน +1

    😮 Wow what a solution sir
    Full respect to you sir

  • @shubham...731
    @shubham...731 9 หลายเดือนก่อน +2

    It was easiest question ever for all my friends and me

  • @ParthBnsl-iitis
    @ParthBnsl-iitis 9 หลายเดือนก่อน +3

    We can also go by another approach which kinda involves some hit and trial but is effective since we know x+y will have one value only
    The approach goes like this...
    Since we know that y is a natural no. i.e. it would be 1,2,3,4..... so on. Hence, RHS will always be an odd number, therfore x must be an odd no. Since square of an odd natural no. is only odd. Now we know that x is an odd no. So now let's assume the range of x... Since x² lies in the range of 2000's hence x should be near 40 to 50 (just assuming, if no soln comes that means our assumption is wrong). Hence, now we know that x is an odd no. And lies between 40 to 50. Now let's take the mid of the range say 45 so that we can specify x. Therefore x² comes out to be 2025... Jackpot for some x belonging to our assumed range there exists a natural no. Y (i.e. 1) for which the given equation is satisfied.. Hence, x+y=46

  • @toxicvenom2826
    @toxicvenom2826 5 หลายเดือนก่อน +1

    Ashish sir also solved this problem in parayas jee 1.0 2025 by kind of similar but more logical way 😊😊 he is the best maths teacher

    • @pradeepkumarpatel5845
      @pradeepkumarpatel5845 4 หลายเดือนก่อน

      Bro kya tum prayas se pdh rhe hi mai bhi start krne wali ho ashish sir ke diye hue ktk wagrah tumse solve ho jata hai agar koi aur tips ho to batanaa please reply

  • @hemantgoyal7786
    @hemantgoyal7786 9 หลายเดือนก่อน

    it is a easy question when you observe it you can see that x will be an odd number and you can just go with hit and trial by putting 45 47 ,,
    so x=45 and y=1.
    easy 2min question

  • @kiptop3418
    @kiptop3418 9 หลายเดือนก่อน +1

    Sir I literally found the solution 😨
    So, I assume a number who's square was closer to 2023 and it was 45 who's square is 2025 so
    X^2 = 45^2
    45^2= 2023+2
    Therefore 2^y = 2
    Therefore y=1
    And X=45

  • @nuranichandra2177
    @nuranichandra2177 9 หลายเดือนก่อน +2

    Brilliant problem and a nice solution strategy

  • @psychoranzer2495
    @psychoranzer2495 9 หลายเดือนก่อน +2

    This solution was just amazing like mannnn❤

  • @someshmishraa
    @someshmishraa 9 หลายเดือนก่อน +1

    Sir if we use trial and error method we can easily find the answer, it is very easy question for the 7th and 8th class students who knows the concept of squares and square roots.

  • @Deepanjan-bp9vo
    @Deepanjan-bp9vo 5 หลายเดือนก่อน

    sir i get many learnings about maths by watching your videos ,thankyou so much

  • @mr.d8941
    @mr.d8941 9 หลายเดือนก่อน +1

    Maine 2023 ke sabse pass wala square dekha jo hota hai 2025 square of 45 toh isko x ki jgh rakha aur 2025-2023 kiya
    Fir 2 bacha lhs me aur rhs me 2^y bacha equate krke y =1 aygya aur x = 45 phle se liya tha hence x+y = 46
    Sir ye shi solution hai ?

  • @pratyakshYT95.5
    @pratyakshYT95.5 9 หลายเดือนก่อน

    Yeh bahut aasan problem hai. Aur Aman sir ka soln koi bahut khatarnaaak nhi hai. Any IOQM student will nail it faster.

  • @ashasmakeover9630
    @ashasmakeover9630 9 หลายเดือนก่อน

    Sir easiest solution ye hoga ki y cannot be greater than 2 kyunki phir RHS (4k +3) ke form ka ho jayega jo kabhi bhi perfect squae ni ho skta so y=1 aur x =45

  • @thehalfbloodprince-nm8uk
    @thehalfbloodprince-nm8uk 9 หลายเดือนก่อน +1

    Hit and trial se karliya under 30 second😅😂
    Bas closest perfect square nearby 2023 check kiya which is 2025
    So x=45
    y=1

  • @elixiroflife9636
    @elixiroflife9636 9 หลายเดือนก่อน

    Easy. Check parity. Upfront checking power of 2 we find x must be odd. Now use mod 4. If x is odd then x = 1 mod 4. But if y greater than 1 then rhs is congruent to 3 mod 4. Not possible. Hence y must be 1 so x = 45. Cheerio!!!😊

  • @MrIndianAstronomer
    @MrIndianAstronomer 9 หลายเดือนก่อน

    sir mere paas ek short trick hai☺. Aap pehele powers ko compare karlo jisse aapko 2=y+1 mil jaega aur aap further directly 2 second me solve kar sakte ho☺

  • @FamilyVibesYT
    @FamilyVibesYT 9 หลายเดือนก่อน

    Find the values of a, b, c and x, y, z with the value of ...
    (We let that...)
    k=x×b⁴-b³-b²+b-2(z×c+x×a)×b°
    Where we have an equality as,
    a×x+y+b×y-z+c×z = {b-[x×b⁴-b³-b²+b-2(z×c+x×a)×b°]}÷ (2×y)
    as well as we also have that,
    b²=a×c , y²=x×z , y²=b²/2
    and....
    1). a, b, c belongs to natural numbers.
    as well as...
    2). x, y, z also belongs to natural numbers.
    and...
    3). k belongs to real numbers.
    Sir please answer and solve my question 🙏🙏
    I am you're big fan ❤️

  • @jayantingolikar7623
    @jayantingolikar7623 7 หลายเดือนก่อน

    2025 (x^2)) is the perfect a sqare of 45 (x) next to 2023. Implies that value of 2^y=2 ,meaning y=1. Therefore x+y= 46

  • @matkarharsh881
    @matkarharsh881 9 หลายเดือนก่อน

    but in student should you following approch
    1) x,y both are natural numbers
    2) find perfect squares near 2023 which is 2025 so y=1 and x=45.

  • @TuhinSChatterjee
    @TuhinSChatterjee 9 หลายเดือนก่อน

    If y=1, then RHS becomes 2025, and x^2 = 2025 implies that x = +/- 45, if x is an integer.
    But, if x is a natural number, then x = -45 is not feasible.
    Then only solution is : x = 45.

  • @yuvrajsingh-wk3py
    @yuvrajsingh-wk3py 9 หลายเดือนก่อน

    Ise aese bhi Kar sakte hai na
    2^y=x^2-2023
    If y belongs to N so start by putting value y=1(minimum value of N)
    If y=1,
    2=x^2-2023
    x^2=2025
    x=45,-45(-45 will be rejected)
    X=45
    Hence,x+y=45+1=46
    This way of solving is easier just you have to know square of 45.

    • @AaravSingh-qv6cp
      @AaravSingh-qv6cp 9 หลายเดือนก่อน

      my solution is similar to sir's.. and you were lucky to get the right answer as you never proved that there can't be more than one solution...

  • @Study-n5l
    @Study-n5l 7 หลายเดือนก่อน

    I found that tha in RHS, 2025 is complete square of 45, if we put y = 1, then we get x = 45
    X+y = 46

  • @RBI-24
    @RBI-24 8 หลายเดือนก่อน +1

    I rarely comment on any video ,but i wil comment here because ,ye question ka infinite solution hai corresponding to natural number jiske liye dono x & y real ho & here x+y ka minimum value poocha jana chaiye jo 46 hoga.

  • @princeraj7223
    @princeraj7223 4 หลายเดือนก่อน +1

    I am Sachin sir student and i solve this question by only seeing thumbnail.❤❤❤❤😂 But thank you sir for complete explanation ❤😊😊

  • @parthchatupale6899
    @parthchatupale6899 7 หลายเดือนก่อน

    x,y are natural numbers so
    if take root on both sides
    x=sqrt(2^y+2023)
    as x is natural RHS should be perfect square so I looked for the square near 2023 which I got of 45
    Therefore x=45,y=1 Again this is hit and trial
    Thanks for correct explanation !!

  • @ruchigupta1894
    @ruchigupta1894 9 หลายเดือนก่อน +1

    He is the GOAT MATHEMATICAN

  • @swapnilsinghrathore9846
    @swapnilsinghrathore9846 9 หลายเดือนก่อน

    What a solution sir,you are best, salute 🫡🫡 to you sir.

  • @Jeromy-ty1fe
    @Jeromy-ty1fe 9 หลายเดือนก่อน +1

    I solved this under 5 seconds, without looking at the solution. Here's how, I first thought of numbers you can square to get a value close to 2023... I first tried 50 then got 45[which is 2025].... Therefore x equals 45 and y equals 1. Ans in 46.

    • @AaravSingh-qv6cp
      @AaravSingh-qv6cp 9 หลายเดือนก่อน +1

      my solution is similar to sir's.. and you were lucky to get the right answer as you never proved that there can't be more than one solution...

    • @Jeromy-ty1fe
      @Jeromy-ty1fe 9 หลายเดือนก่อน

      Nice. I would have never have thought of this solution under that much pressure😅. Good luck.

  • @Snoozy_FTW
    @Snoozy_FTW 8 หลายเดือนก่อน

    Such questions are rare in JEE more kind of math Olympiad question
    Btw good reasoning by sir 👍 👌

  • @aranyakxno1058
    @aranyakxno1058 9 หลายเดือนก่อน +1

    Can hit and try method also be a right method to solve this question

  • @amitgautam6136
    @amitgautam6136 9 หลายเดือนก่อน

    Sir🙏🙏..
    Sir आप ऐसे ऐसे question दिखा कर मजा ला देते हैं सच कह रहा हूँ।
    आपके तारिफ में और क्या कहूँ शब्द ही कम पड रहे हैं।

  • @globalolympiadsacademy4116
    @globalolympiadsacademy4116 9 หลายเดือนก่อน

    Just looking at the question and hving the knowledge that 2+2023 = 45^2 one could have have answered as 46. The sheer fact that only one answer is being asked one ahiudk ahve answered...I am surprised so many students left it

  • @aakarsinha1197
    @aakarsinha1197 9 หลายเดือนก่อน

    Sir, Can we analyse like this?, that
    Since x²=2^y+2023
    Therefore, 2^y+2023 must be a perfect square, and for this only possible value for 'y' is 1. And therefore x=45..

  • @MathematicalGalaxy
    @MathematicalGalaxy 6 หลายเดือนก่อน

    Sir I am in class 9th and solved it in first attempt.😊 Sir thank you a lot because your videos has helped me a lot and brought me in a position such that I am no longer afraid of competitive questions.😊😊

  • @pratyaksh1729
    @pratyaksh1729 9 หลายเดือนก่อน

    Just take mod 4 we get y

  • @Hellow1913
    @Hellow1913 9 หลายเดือนก่อน +2

    Bohot easy for a student of Vedic maths like me. We all know ki jiss number ke end meiñ 25 aata hai and start ke digits do consecutive numbers ka product ho toh voh ek perfect square hota hai. Here 20 is the product of 4 and 5. So clearly add 2 to 2023 and you will get 2025 which is aperfect square of 45. Done. Answer x=45 and y=1.

  • @tamaltarude3357
    @tamaltarude3357 9 หลายเดือนก่อน

    I solved this thing mentally . x=45 , y=1

  • @Abhijeet-dc3ty
    @Abhijeet-dc3ty 8 หลายเดือนก่อน

    Most easiest solution would be for y=1 it's x=45
    And for higher values of y RHS is of form 4k+3 which can't be a perfect square by class 10 EDL 😅

  • @alaminshabyashachi742
    @alaminshabyashachi742 8 หลายเดือนก่อน

    I saw the problem and instantly the following solution came to me, which is much easier too:
    The RHS is odd, so must the LHS be. Any odd square is 1(mod 8). 2023 is 7(mod 8). So we just need another 2(mod 8) as contribution from 2^y. For y>=3, 2^y=0(mod 8). And y^2=4(mod 8). So y=1 is the only solution.

  • @souradipdas3902
    @souradipdas3902 9 หลายเดือนก่อน

    One Liner Solution:
    If y > 1, then by checking modulo 4 on RHS we get x^2 = 3 (mod 4), impossible as a square is either 0,1 (mod 4), so y = 1 only possibility and x = 45.

    • @sonorousgaming7202
      @sonorousgaming7202 8 หลายเดือนก่อน

      could you please tell which chapter is it from? kya yeh number theory se hai? usme bhi konse sub-topic se?

    • @souradipdas3902
      @souradipdas3902 8 หลายเดือนก่อน

      Yes this is from number theory itself, I don't think it has any such sub topics, this is the core idea of number theory (modular arithmetic).

  • @victinyyt1481
    @victinyyt1481 7 หลายเดือนก่อน

    Pranam Charan sparsh peri pagdi apke pairo me
    Kuchh v likhu Kam hai gr8 teacher

  • @globalolympiadsacademy4116
    @globalolympiadsacademy4116 9 หลายเดือนก่อน

    Sir 2^y (even) + 2023 (odd) will be odd so x^2 is odd and hence x has to be odd. However to prove fhat y can be only 1, one needs this factorization after subtracting 1 on both sides. Fantastic solution Sir.❤

    • @globalolympiadsacademy4116
      @globalolympiadsacademy4116 9 หลายเดือนก่อน

      One more way to think is that if x is established to be odd then the form of x is 2n+1 so x^2 will be 4n^2 + 4n +1 and therefore when divided by 4 will give a remainder of 1. Now 2023 mod 4 is 3 so the only option of 2^y is 2 (y=1)which will give a remainder of 1 when divided by 4 all other higher values of y will give a reminder of 3 as higher values of y (y>=2) will give a reminder of 0 when 2^y is divided by 4 and therefore 2^y + 2023 will give a reminder of 3.