Double Integrals and Volume over a General Region - Part 2

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 14

  • @jenbrenner
    @jenbrenner 13 ปีที่แล้ว +1

    These videos are very helpful. Thank you so much for taking the time to make them - I'm studying calculus after 6 years in between cal 2 and cal 3 and this is very helpful.
    Thanks again,
    Jennifer

  • @chilldog1234567890
    @chilldog1234567890 10 ปีที่แล้ว +1

    Your videos are so awesome. I rather spend 3hrs at home study from your video than wasting time going to classes which all I do is fall asleep.

  • @ronallanbaran1891
    @ronallanbaran1891 10 ปีที่แล้ว +1

    first time to watch this but everything is already clear...
    One of the best videos !!

  • @myeshacbj
    @myeshacbj 13 ปีที่แล้ว +1

    Great Video... You helped me pass my test. Especially when talking about the boundaries and when to integrate y or x first. Other videos don't discuss this. Thanks sooo much! :-)

  • @akgh2010
    @akgh2010 10 หลายเดือนก่อน

    Great video, as usual. Amazing explanation. Just a very small trivial note at time 6:14. The y integral limits are from x^3 to sqrt(x), that's 100% correct, no doubt about it. But then, the x integral limits, you gave those for y to be from 0 to 1, and this should be instead the integral limits of x from 0 to 1, you've said, the y limits from 0 to 1. I know this sometimes could be confusing since in this example, both integral limits for y looks like the same integral limit for x which goes from 0 to 1.

  • @Ken-n2g5r
    @Ken-n2g5r 2 หลายเดือนก่อน

    Very helpful and save quite alot of time. Thank you so much.

  • @HeliXtec
    @HeliXtec 12 ปีที่แล้ว

    Thanks for your videos; they're lifesavers!

  • @persianshawn92
    @persianshawn92 9 ปีที่แล้ว

    how do you get the point (2,1)? I have problem knowing at which points they cross each other

    • @akgh2010
      @akgh2010 10 หลายเดือนก่อน

      Yea, this got me at first of solving these type of problems. At time 2:20, this point is called intersection points. To find them, set both boundary functions to equal each other. Since, y=x-1; y=(1/2)x so set them equal to each other, x-1=(1/2)x => x-(1/2)x=1 => (1/2)x=1 => x=2, plug 2 in y=x-1 or y=(1/2)x you get y=1, so there is only one intersection point, i.e. (2,1). You can apply the same logic to the second example.

  • @segoviapatricio
    @segoviapatricio 10 ปีที่แล้ว

    great video!!! keep the good job!

  • @simond7795
    @simond7795 7 ปีที่แล้ว

    With respect to, not with respects to.

  • @iluvbigbootie
    @iluvbigbootie 10 ปีที่แล้ว

    did u make a mistake? -(0-1/12(-1)^4= -(1/12) there it's 1/6-1/12-1/12= 1/6-2/12= 1/12

    • @iluvbigbootie
      @iluvbigbootie 10 ปีที่แล้ว

      oh never mind i see i made the mistake