Nice Math Olympiad Question | iota maths problem | How to Simplify?

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ม.ค. 2025

ความคิดเห็น • 15

  • @tassiedevil2200
    @tassiedevil2200 3 วันที่ผ่านมา +1

    While this presented an interesting way to show that (1+i*sqrt[3])/2 is the cube root of -1, it might have been quicker to represent it in complex polar form as exp[i*pi/3], and recognise that 7777 powers is exp[i *(7776+1) * pi/3] or exp[i*(1296*2*pi +pi/3)] so result is just exp[i*pi/3]. Admittedly, this does assume that one notices that (1+i*Sqrt[3])/2 is unimodular and recognises the 30-60-90 triangle to get the phase.

    • @JavierPMuniain
      @JavierPMuniain วันที่ผ่านมา +1

      This was the clear way to solve it and the intended way for a Math Olympiad problem for sure. By looking at the large exponent in the problem, it was clear that Euler's path was the shortest one...

  • @krzysztofbaus1311
    @krzysztofbaus1311 3 วันที่ผ่านมา +1

    Very elegant method.

  • @princejag
    @princejag 3 วันที่ผ่านมา +1

    Beautiful.

  • @مهدیعمادی-غ5ب
    @مهدیعمادی-غ5ب 3 วันที่ผ่านมา +1

    That one is perfect

  • @مهدیعمادی-غ5ب
    @مهدیعمادی-غ5ب 3 วันที่ผ่านมา +1

    can you learn us sth about methamatics for example making a video about what is the imaginary number and how is the multiplication works on them.

  • @dolichakraborty6020
    @dolichakraborty6020 3 วันที่ผ่านมา +2

    This isn't good bro
    what quality is this this question is so far from olympia level
    Olympiads are 100x tougher and you are putting olympiad in the thumbnail and a picture of einstein!
    this is as funny as worse your thumbnail is 😂😂😂

  • @albertomaragliano
    @albertomaragliano 2 วันที่ผ่านมา +1

    There is an error at minute 5.22.
    (X-1) X does NOT mean (X-1-X) 😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😮😢

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  วันที่ผ่านมา

      Sorry Boss
      That is not error.
      I think you have misunderstood.
      Please review it.