YOLOv1 from Scratch

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ม.ค. 2025

ความคิดเห็น • 306

  • @AladdinPersson
    @AladdinPersson  4 ปีที่แล้ว +58

    Here's the outline for the video:
    0:00 - Introduction
    0:24 - Understanding YOLO
    08:25 - Architecture and Implementation
    32:00 - Loss Function and Implementation
    58:53 - Dataset and Implementation
    1:17:50 - Training setup & evaluation
    1:40:58 - Thoughts and ending

    • @venkatesanr9455
      @venkatesanr9455 4 ปีที่แล้ว

      Highly helpful and awesome

    • @omarabubakr6524
      @omarabubakr6524 2 ปีที่แล้ว

      why didn't you explain the utils file?

  • @PaAGadirajuSanjayVarma
    @PaAGadirajuSanjayVarma 4 ปีที่แล้ว +92

    Plz give this man a noble proze

    • @deeps-n5y
      @deeps-n5y 3 ปีที่แล้ว

      *Nobel

    • @iiVEVO
      @iiVEVO 3 ปีที่แล้ว +4

      A noble nobel prize*

  • @asiskumarroy4470
    @asiskumarroy4470 4 ปีที่แล้ว +14

    I dont know how do I express my gratitude to you.Thanks a lot brother.

  • @MohamedAli-dk6cb
    @MohamedAli-dk6cb 2 ปีที่แล้ว +14

    One of the greatest deep learning videos I have ever seen online. You are amazing Aladdin, please keep going with the same style. The connections you make between the theory and the implementation is beyond PhD level. Wish I can give you more than one like.

  • @vijayabhaskar-j
    @vijayabhaskar-j 4 ปีที่แล้ว +96

    This series was super helpful, can you please continue this by making one for Yolo v3, v4, SSD, and RetinaNet? That will make this content more unique because none of the channels that explains all these architectures and your explanations are great!

    • @jertdw3646
      @jertdw3646 2 ปีที่แล้ว

      I'm confused on how i'm supposed to load the images up for training. Did you get that part?

    • @Glitch40417
      @Glitch40417 ปีที่แล้ว

      ​​@@jertdw3646on't know if you got it or not, actually there's a train.csv file.
      Instead of 8examples.csv or 100examples.csv we can use that file.

  • @_adi_1900
    @_adi_1900 4 ปีที่แล้ว +9

    This channels going to blow up now. Great stuff!

  • @thetensordude
    @thetensordude 4 ปีที่แล้ว +55

    Most underrated channel!!!

    • @vanglequy7844
      @vanglequy7844 3 ปีที่แล้ว

      Let's look at it upside down then!

  • @keshavaggarwal5835
    @keshavaggarwal5835 4 ปีที่แล้ว +3

    Best Channel ever. Cleared all doubts about YOLO. I was able to implement this in tensorflow by following your guide with ease. Thanks a lot bro.

    • @AladdinPersson
      @AladdinPersson  4 ปีที่แล้ว +1

      Awesome to hear it! Leave a link to Github and people could use that if they are also doing it for TF?:)

    • @Skybender153
      @Skybender153 3 ปีที่แล้ว +1

      Link for the tensorflow repo would be appreciated Keshav

  • @Anonymous-nz8wd
    @Anonymous-nz8wd 4 ปีที่แล้ว +4

    GOD DAMN! I was searching for this for a really long time but you did it, bro. Fantastic.

  • @caidexiao9839
    @caidexiao9839 2 ปีที่แล้ว +3

    Thanks a lot for you kindness to provide the yolov1 video. By the end of the video, you got mAP close to 1.0 with only 8 training images. I guess you used weights of a well trained model. With more than 10,000 images and more than 20 hours on Kaggle 's free GPU, my mAP was about 0.7, but my validation mAP was less than 0.2. Nobody mentioned the over fitting issue of yolo v1 model training.

    • @satvik4225
      @satvik4225 7 หลายเดือนก่อน +2

      mine is coming 0.0 always

    • @TornadoFilms_
      @TornadoFilms_ 19 วันที่ผ่านมา

      @@satvik4225 yeea why is that , did u got that fixed

  • @thanhquocbaonguyen8379
    @thanhquocbaonguyen8379 3 ปีที่แล้ว +7

    massively thank you for implementing this in pytorch and explain every bits in detail. it was really helpful for my university project. i have watched your tutorials at least 3 times. thank you!

    • @abireo2285
      @abireo2285 2 ปีที่แล้ว

      PhDs are 100% learning how to code here :)

  • @_nttai
    @_nttai 4 ปีที่แล้ว +3

    I was lost somewhere in the loss but still watch the whole thing. Great video. Thank you

  • @rampanda2361
    @rampanda2361 3 ปีที่แล้ว +1

    The savior, Been looking at codes of other people for few days, Could not understand it better as those were codes only with no explanation what so ever. Thank you very much.

  • @haldiramsharma4601
    @haldiramsharma4601 4 ปีที่แล้ว +8

    Best channel ever!! All because of you, I learned to implement everything from scatch!! Thank you very much

  • @eminemhc5763
    @eminemhc5763 4 ปีที่แล้ว +5

    Only 3.5K subscribers ??? One of the most underrated channel in TH-cam
    Keep posting quality video like this bro , soon you will reach 100K+ subs , congrats in advance
    Thanks for the quality content :)

    • @AladdinPersson
      @AladdinPersson  4 ปีที่แล้ว +1

      Appreciate the kinds words 🙏 🙏

  • @nguyenthehoang9148
    @nguyenthehoang9148 ปีที่แล้ว +1

    By far, your series is one of the best content about computer vision on TH-cam. It's very helpful when people explain how things work under the hood, like the very well-known courses by Andrew Ng. If you make a paid course for this kind of content, I'll definitely buy it.

  • @sangrammishra4396
    @sangrammishra4396 2 ปีที่แล้ว +1

    I love the way he explained and always maimtain simplicity in explaining the code, thanks aladdin

  • @vil9386
    @vil9386 13 วันที่ผ่านมา

    Absolutely awesome. Paper to python code is such a valuable teaching input for aspiring AI/ML engineers.

  • @Тима-щ2ю
    @Тима-щ2ю 8 หลายเดือนก่อน

    What an amount of work! I don't often see people in the internet that are so dedicated to deep learning!

  • @pphuangyi
    @pphuangyi ปีที่แล้ว

    Thanks!

  • @crazynandu
    @crazynandu 4 ปีที่แล้ว +14

    Great Video as usual . Looking forward to see RCNNs (mask , faster , fast , ..) from scratch from you !! Similar to Transformers you did, you can do one from scratch and other using the torchvision's implementation .Kudos !!

  • @sachavanweeren9578
    @sachavanweeren9578 2 ปีที่แล้ว +2

    I can imagine this video took a lot of time to prepare, the result is great and super helpful. Thank you very much. Respect!

  • @krzysztofmajchrzak1881
    @krzysztofmajchrzak1881 4 ปีที่แล้ว +1

    I want to thank so much! It is literally a live saver for me! Your channel is underrated!

  • @WiktorJurek
    @WiktorJurek 3 ปีที่แล้ว +3

    This is insanely valuable. Thank you very much, dude.

  • @ai4popugai
    @ai4popugai ปีที่แล้ว

    The most clear explanation that I have ever found, thank you!!

  • @ИльяЯгупов-н4я
    @ИльяЯгупов-н4я ปีที่แล้ว

    Thank you so much for this video, it's so helpful! Especially the concept in first 9 minutes. I read a lot of sources, but here it's the only place where it is clearly explauned. And more precisely the part where we are looking for a cell with midpoint of bounding box! Thank you so much for a great Explanation!

  • @张子诚-z3b
    @张子诚-z3b 3 ปีที่แล้ว

    I'm a beginner of object detection, You videos help me a lot. I really like your style of code.

  • @abireo2285
    @abireo2285 2 ปีที่แล้ว

    This is the best deep learning coding video I have ever seen.

  • @shantambajpai8064
    @shantambajpai8064 4 ปีที่แล้ว +2

    Dude, this is AMAZING !

  • @정래혁-c8y
    @정래혁-c8y 3 ปีที่แล้ว +2

    This video was so helpful. Thank you!

  • @nikolayandcards
    @nikolayandcards 4 ปีที่แล้ว +3

    So glad I came across your channel (Props to Python Engineer). Very valuable content. Thanks for sharing and you have gained a new loyal subscriber/fan lol.

  • @TheDroidMate
    @TheDroidMate ปีที่แล้ว

    Amazing video series, thanks! Extra kudos for the OS you're using 💜

  • @poojanpanchal3721
    @poojanpanchal3721 4 ปีที่แล้ว

    Great Video!! never seen anyone implementing a complete YOLO algorithm from scratch.

  • @vishalm2338
    @vishalm2338 4 ปีที่แล้ว

    Thanks a ton Aladdin for making this video. I truly loved it. Also, Would like to see Retinanet implementation . It would be really fun to watch too. Kudos to you!!

  • @francomozo6096
    @francomozo6096 4 ปีที่แล้ว

    Thank you man!!!! Great video! Gave me a really good understanding on Yolo, will subscribe

  • @ignaciofalchini8264
    @ignaciofalchini8264 3 ปีที่แล้ว

    you are awesome bro, really nice job, best YOLOv1 video in existence, thanks a lot

  • @sumitbali9194
    @sumitbali9194 3 ปีที่แล้ว

    Your videos are a great help to data science beginners. Keep up the good work 👍

  • @ilikeBrothers
    @ilikeBrothers 3 ปีที่แล้ว +1

    Просто топчик! Огромное спасибо за столь подробное разъяснение ещё и с кодом.

  • @bradleyadjileye1202
    @bradleyadjileye1202 ปีที่แล้ว

    Absolutely wonderful, thank you very much for such a fantastic job !

  • @NamNguyen-fn5td
    @NamNguyen-fn5td 3 ปีที่แล้ว +1

    Hi. I have question at 1:12:29. Why "x_cell, y_cell = self.S * x - j, self.S * y - i" minus j and i ? What does this mean?

    • @NamNguyen-fn5td
      @NamNguyen-fn5td 3 ปีที่แล้ว

      at 50:27 if you not flatten box_predictions and box_target in MSEloss, it is the same result as flatten

  • @haideralishuvo4781
    @haideralishuvo4781 4 ปีที่แล้ว

    FInally , Most waited video , Will have a look asap

  • @Epistemophilos
    @Epistemophilos 2 ปีที่แล้ว +6

    Is there a mistake in the network diagram in the paper? Surely the 64 7x7 filters in the first layer result in 64 channels, not 192? What am I missing? If it is a mistake (seems highly unlikely), then the question is if there are really 192 filters, or 64.

    • @chocorramo99
      @chocorramo99 5 หลายเดือนก่อน +1

      64 kernels and there are 3 channels, 192 resulting channels. lol kinda late.

    • @Epistemophilos
      @Epistemophilos 5 หลายเดือนก่อน +2

      @@chocorramo99 Linear algebra is timeless! Thanks :D

  • @santoshwaddi6201
    @santoshwaddi6201 3 ปีที่แล้ว

    Very nicely explained in detail.... Great work

  • @jitmanewtyagi565
    @jitmanewtyagi565 3 ปีที่แล้ว +1

    Broooooo, thanks for this man.

  • @patloeber
    @patloeber 4 ปีที่แล้ว

    Amazing effort!

  • @changliu3367
    @changliu3367 3 ปีที่แล้ว

    Awesome video. Pretty helpful! Thanks a lot.

  • @1chimaruGin0_0
    @1chimaruGin0_0 4 ปีที่แล้ว +2

    Great work as always!
    This video help me a lot to understand my confusion about yolo loss.
    Could you do some video on Anchors and Focal loss?

    • @AladdinPersson
      @AladdinPersson  4 ปีที่แล้ว +2

      I'll revisit object detection at some point and try to implement more state of the art architectures and will look into it :)

  • @zachhua7704
    @zachhua7704 3 ปีที่แล้ว +4

    Hi Aladdin, thanks for the great tutorial. I got a question at 1:13:09, in the paper, authors say the width and height of each bounding box are relative to the whole image, while you say they are relative to the cell. Is that a mistake?

  • @buat_simple_saja
    @buat_simple_saja 2 ปีที่แล้ว

    Thank you man, your video help me a lot

  • @pixarlyVII
    @pixarlyVII 3 ปีที่แล้ว +1

    I have a question. At 39:41 you, from utils, import intersection_over_union. I thought that dataset.py, loss.py, ..., utils.py where empty python files. Why did you imported a function from utils.py if in the tutorial we dont code anything in this file?
    I've followed the tutorial and Im stucked at 59:50 bc my code cant import name "intersection_over_union" from "utils".

    • @pixarlyVII
      @pixarlyVII 3 ปีที่แล้ว

      Nada, soy gilipollas. Me he copiado el archivo utils.py de lo que has subido a GitHub y ya va.
      It would be interesting to code that part (utils.py) too in the tutorial.

  • @majtales
    @majtales 4 ปีที่แล้ว +1

    @27:05 why flatten again? Isn't it already flattened in the forward method of the class?
    Also, do we really need to flatten? @51:22 The MSELoss documentation says it sums over all dimensions by default. Also how did you work around that division by zero?@1:33:15

  • @ZXCOLA-z7s
    @ZXCOLA-z7s 2 ปีที่แล้ว

    That’s totally awesome!

  • @mizhou1409
    @mizhou1409 3 ปีที่แล้ว

    Great job, very helpful for a new beginner.

  • @sb-tq3xw
    @sb-tq3xw 4 ปีที่แล้ว

    Amazing Work!!

  • @mahdiamrollahi8456
    @mahdiamrollahi8456 2 ปีที่แล้ว +1

    Hello. Why the target and prediction are in different shapes?

  • @qichongxia2110
    @qichongxia2110 11 หลายเดือนก่อน

    very helpful! thank you !

  • @SamtapesGamer
    @SamtapesGamer ปีที่แล้ว

    Amazing!! Thank you very much for all these lessons! It would help me a lot if you could make videos implementing Kalman Filter and DeepSort from scratch, for object tracking

  • @leochang3915
    @leochang3915 4 ปีที่แล้ว

    Thank you , you really help me a lot!

  • @GursewakSinghDhiman
    @GursewakSinghDhiman 3 ปีที่แล้ว

    You are doing an amazing job. Thanks alot

  • @nova2577
    @nova2577 4 ปีที่แล้ว

    Appreciate your effort!!

  • @PaAGadirajuSanjayVarma
    @PaAGadirajuSanjayVarma 4 ปีที่แล้ว

    I am glad I found your channel

  • @wuke4231
    @wuke4231 ปีที่แล้ว

    thank you for your video!😘

  • @jeroenritmeester73
    @jeroenritmeester73 3 ปีที่แล้ว +3

    How does the very first layer of the DarkNet with out_channels = 64 produce 192 feature maps? I understand that 3*64 = 192 but I don't really see how that applies.
    Similarly, the second step has a convlution of 3x3x192, but there are 256 feature maps afterwards.

    • @DanielPietsch-o6r
      @DanielPietsch-o6r ปีที่แล้ว

      I am also confused about that part. In my understanding it should be 7x7x3 and then 192 total kernels, right?

  • @adarshsingh936
    @adarshsingh936 3 ปีที่แล้ว +2

    Can someone explain the use of unsqeeze(3) at 43:55

  • @hetalivekariya7415
    @hetalivekariya7415 2 ปีที่แล้ว

    Why I did not come across your channel before!!. But anyways I am glad I found your channel. Thank you.

  • @venkateshvaddadi271
    @venkateshvaddadi271 3 ปีที่แล้ว

    great job brother
    you are really awesome

  • @vikramsandu6054
    @vikramsandu6054 3 ปีที่แล้ว

    Your name is Aladdin but you are a genie to us. Thanks for this video.

  • @R0Ck50LiD-b5z
    @R0Ck50LiD-b5z 2 ปีที่แล้ว +1

    Hi, do you have any details on how you prepared the dataset?

  • @vamsibalijepally3431
    @vamsibalijepally3431 4 ปีที่แล้ว +1

    def test(S=7, B=2,C=20):
    model = Yolov1(in_channels=3,split_size=S,num_boxes = B,num_classes=C)
    x = torch.randn((2,3,448,448))
    print(model(x).shape)
    this will throw help if got same error like me
    __init__() missing 1 required positional argument: 'kernel_size'

    • @pranavkushare6788
      @pranavkushare6788 4 ปีที่แล้ว

      Yeah i'm getting the same error.
      Have you found any solution and reason ?

    • @chinmay996
      @chinmay996 3 ปีที่แล้ว

      @@pranavkushare6788 if you still have not solved the problem, check your parameters in CNNBlock inside _create_conv_layers method.

  • @soorkie
    @soorkie 4 ปีที่แล้ว +7

    Hi, can you do a similar one with Graph Convolutional Networks? Your videos are very usefull ❤️

  • @jaylenzhang4198
    @jaylenzhang4198 ปีที่แล้ว

    My understanding of this λ_noob-associated loss function is that it is used to penalize false negatives. This λ_noob-associated loss function includes all grid cells that do not contain any objects but have confidence scores larger than 0. Since there will be a lot of these false negatives, the author adds the coefficient λ_noob to lower their ratio in the overall loss function.

  • @bhavyashah8674
    @bhavyashah8674 2 ปีที่แล้ว +1

    Hii @Aladdin Persson. Amazing video. I just have a doubt. While calculating iou for true_label and pred_labels, should we not add the width and height that we clipped when creating true_labels? That is, in case of the example you gave of [0.95, 0.55, 0.5, 1.5], shouldn't we convert 0.95 to 0.95(as the cell we chose is in 0th index along the width) and 0.55 to 1.55(as the cell we chose is in 1st index along the height). This is because we are doing geometric operations like converting x_centre and y_centre to xmin, ymin, xmax and ymax and on not doing the conversion I mentioned, instead of getting the xmin, ymin, xmax and ymax of the bounding box we get some other coordinates instead.
    Also could you please create the same using Tensorflow?

  • @kayleescanlin4699
    @kayleescanlin4699 5 หลายเดือนก่อน

    Can someone explain what the "conda activate dl" means in the terminal at 57:27? Is that a specific environment to download or is it something we create ourselves?

    • @SAnish-uj4jc
      @SAnish-uj4jc 5 หลายเดือนก่อน

      yo im not able to understand the code ?? am i missing something please help

  • @vijayabhaskar-j
    @vijayabhaskar-j 4 ปีที่แล้ว

    at 42:13 shouldn't that be [...,25:29] not [...,26:30] as the first iout_b1 covers 21,22,23,24 and the second should cover 25,26,27,28? or 25th is the confidence score and 26,27,28,29 are the second bounding boxes?

    • @AladdinPersson
      @AladdinPersson  4 ปีที่แล้ว +2

      Yes you're correct, 25th is for the confidence score for the second bbox and 26:30 (remember it's non-including the 30th index) so I think what is shown is correct

  • @omarhesham7390
    @omarhesham7390 8 หลายเดือนก่อน

    Fantastic Bro

  • @siddhantjain2591
    @siddhantjain2591 4 ปีที่แล้ว +2

    Awesome as always!
    Could you do some video on EfficientNets sometime, that would be great !

  • @krishnasumanthmannala984
    @krishnasumanthmannala984 4 ปีที่แล้ว

    At 03:42 the width and height of an object are relative to the image I think wrt YOLO 1.

  • @hichensstark1048
    @hichensstark1048 4 ปีที่แล้ว

    i have wathed all if the videos !!!

  • @canyi9103
    @canyi9103 ปีที่แล้ว

    4:24, In paper the width and height are predicted relative to the whole image. they can not be larger than 1, but in your video, you said it can larger than 1. It seems not right

  • @larafischer420
    @larafischer420 ปีที่แล้ว +1

    muito boa essa série de vídeos! Vc pode passar as referências q vc usa pra montar esses notes? Tenho dificuldade em encontrar materiais pra estudar

  • @zukofire6424
    @zukofire6424 ปีที่แล้ว

    Thanks! I don't understand the code regarding the bounding boxes though... Could you do a deep dive into the bounding boxes calculations AND show how to test on a new image?

  • @josephherrera639
    @josephherrera639 4 ปีที่แล้ว +3

    Do you mind showing how to plot the images with their bounding boxes (and how that can be applied to testing on new data)? Also, do all images have a maximum of 2 objects to localize?

  • @nerdyguy7270
    @nerdyguy7270 2 ปีที่แล้ว +2

    Hi, this is awesome and really helpful. I was going through the yolov1 paper and found that the height and the width are relative to the whole image and not to the cell. Is that correct?

  • @apunbhagwan4473
    @apunbhagwan4473 3 ปีที่แล้ว +1

    He is simply Great

  • @horvathbalazs1480
    @horvathbalazs1480 4 ปีที่แล้ว +3

    Hi, I really appreciate your work and patience to make this video, however I would like to ask the following: The loss function is created based on the original paper, but the loss for bounding box midpoint coordinates (x,y) are not included because we calculate just the sqrt of width, height of boxes. Am I right?

    • @horvathbalazs1480
      @horvathbalazs1480 4 ปีที่แล้ว +3

      Okay, sorry for the silly question. I just noticed that we should not get the squared root of x,y so that's why we skip here:
      box_predictions[..., 2:4] = torch.sign(box_predictions[..., 2:4]) * torch.sqrt(
      torch.abs(box_predictions[..., 2:4] + 1e-6)
      )
      box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])

  • @danlan4132
    @danlan4132 2 ปีที่แล้ว

    Thank you very much!!!! Excellent video!!!! By the way, do you have any tutorials for oriented bounding box detection?

  • @shenbin2930
    @shenbin2930 2 ปีที่แล้ว +1

    When I use the code, the detection accuracy of the training set is very good, but the detection accuracy of the test set is almost equal to 0, which is obviously overfitting.
    In fact, the original code is to train an overfitting model, but I have modified some of the code. Why is it still overfitting?
    I have made the following modifications:
    nn.Dropout(0) -> nn.Dropout(0.5)
    WEIGHT_DECAY = 0->WEIGHT_DECAY = 2e-4
    This question has bothered me for a long time. I would appreciate it if you could answer it.

    • @FanFanlanguageworld1707
      @FanFanlanguageworld1707 2 ปีที่แล้ว

      How many images you trained with?

    • @m4gh3
      @m4gh3 ปีที่แล้ว

      I got the same results, I too am trying to understand what is going on
      Also I can overfit with a way smaller network

  • @淮都先生
    @淮都先生 2 ปีที่แล้ว

    many thanks!!

  • @markgazol5404
    @markgazol5404 4 ปีที่แล้ว +2

    Very clear and helpful! Thanks for the videos. I've got one question, though, Can you please explain what is the label for the images with no objects? During the training should it be like [0, 0, 0, 0, 0] or smth?

  • @yantinghuang7491
    @yantinghuang7491 4 ปีที่แล้ว +1

    Great video! Will you make "from scratch" series video for Siamese network?

    • @AladdinPersson
      @AladdinPersson  4 ปีที่แล้ว

      I'll look into it! Any specific paper?

    • @yantinghuang7491
      @yantinghuang7491 4 ปีที่แล้ว

      @@AladdinPersson Thanks Aladdin! This one should be a good reference: Hermans, Alexander, Lucas Beyer, and Bastian Leibe. "In defense of the triplet loss for person re-identification." arXiv preprint arXiv:1703.07737 (2017).

  • @NityaStriker
    @NityaStriker 4 ปีที่แล้ว +1

    Hi.
    I’m unable to load the PascalVOC_YOLO dataset within a Colab notebook due to the dataset being private. Is there a way to use the dataset in a Colab notebook without downloading it on my laptop ?

    • @AladdinPersson
      @AladdinPersson  4 ปีที่แล้ว

      I'm not sure, I think you need to download it. Isn't there a way to upload the dataset to Colab so you can run it?

    • @NityaStriker
      @NityaStriker 4 ปีที่แล้ว

      @@AladdinPersson There is, but my internet connection is not the fastest while having a small data cap which is why I usually use !wget within colab itself. In this case, both the !wget command and Kaggle’s command failed within Colab for the Kaggle file after which I wrote the above comment.
      Later, I copied the code from the get_data file, pasted it onto a cell, added a few lines of code for creating 8examples.csv and 100examples.csv, and ran it for the code to work.

  • @anierrn6935
    @anierrn6935 3 ปีที่แล้ว

    35:35 explanation about square roots for w,h

  • @heriun7268
    @heriun7268 3 ปีที่แล้ว

    4:00 I think you are wrong. w,h is realative to the whole image. check paper Section 2.Unified Detection - 4th paragraph

  • @BENHARARVIND
    @BENHARARVIND 2 ปีที่แล้ว

    Brother please help
    If the program detects i want an alarm
    But I don't know what to write in 'if' condition (what will be name of the detected image inside the box from the video)
    How can I know the name of the detected frame

  • @sekomer
    @sekomer 3 ปีที่แล้ว

    gr8 vid, thanks

  • @amartyabhattacharya
    @amartyabhattacharya ปีที่แล้ว

    One question that I have is, How can I get to know the coordinates of the grid cell of which the centers are a part of? Is it like (1,1) of the output prediction gives the prediction for grid cell having two endpoints as (0,0),(64,64) ? (448/7 = 64)

  • @berkgur868
    @berkgur868 2 ปีที่แล้ว

    Why are we multiplying the width, height loss with sign of the gradient? I did not get it.

  • @dengzhonghan5125
    @dengzhonghan5125 2 ปีที่แล้ว

    Thanks for your awsome video which really helps me understand the concept. (code always tell us the truth)

  • @xstepxiv9965
    @xstepxiv9965 3 ปีที่แล้ว

    I want to know why the start dim and the end dim of torch.flatten in loss.py are different, how should i ensure where is the start dim and where is the end dim?

  • @龍西瓜
    @龍西瓜 3 ปีที่แล้ว

    really good episode