R-CNN: Clearly EXPLAINED!

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ก.พ. 2025

ความคิดเห็น • 103

  • @asamoahjeffrey6343
    @asamoahjeffrey6343 ปีที่แล้ว +19

    One of the best videos I have watched. Very detailed Explanations. Keep up the good work

  • @senpanwu5163
    @senpanwu5163 8 หลายเดือนก่อน +6

    Great Work! You explained 1000 times better than my uni lecturer :D

  • @holiddiiin
    @holiddiiin 2 หลายเดือนก่อน +1

    bro you did actually the best video for eexpaling Rcnn

  • @bhavanamalla954
    @bhavanamalla954 ปีที่แล้ว +4

    Such a great video!! Keep them coming!

  • @ahmedjawadrashid666
    @ahmedjawadrashid666 ปีที่แล้ว +1

    Such an underrated video. Well done mate!

  • @AsadullahMukib
    @AsadullahMukib 3 หลายเดือนก่อน

    the way you organised the following content are just awesome ..

  • @gotagando2449
    @gotagando2449 2 ปีที่แล้ว +9

    Great work.
    I like how you made youtube chapters to explain independent techniques like NMS. Really useful.
    Many people don't have the time to go through papers in details and just run the codes to get things done.
    Your videos could be helpful to solve that problem.
    I'm personally hoping to see videos on YOLO series especially the YOLOX model :)
    You could also talk about the object detection models landscape and how each model has pros/cons w.r.t. inference time (FPS) and performance.

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว +1

      Wonderful feedback, Gota. I'll make sure to create them in the future

  • @layer8man
    @layer8man 2 ปีที่แล้ว +2

    Very nice! I can't wait to see more videos like this!

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว

      Thanks, Jeffrey! Wait for the better ones then 😄

  • @Hansly_rz
    @Hansly_rz 9 หลายเดือนก่อน +1

    oh my it explains everything at once! Thank you for making this video!

  • @ceritatujuhdesember5393
    @ceritatujuhdesember5393 ปีที่แล้ว

    This so easy how i can uderstand about RCNN and that is because your explanation!
    thank you very much, i love your video

  • @MyungeinHan
    @MyungeinHan ปีที่แล้ว

    Simple and easy to understand! Thank you for making this video :)

  • @cbngu5s2yf3ai12l
    @cbngu5s2yf3ai12l ปีที่แล้ว +1

    Thanks for your work! It's helps me a lot! Appreciate that~

  • @vivekdehulia5156
    @vivekdehulia5156 2 หลายเดือนก่อน

    Very well explained . Thank you

  • @Vinay1272
    @Vinay1272 ปีที่แล้ว

    Thanks a lot for this! It was really clean and precisely explained. mAP explanation was on point.

  • @MuhammadArnaldo
    @MuhammadArnaldo 2 ปีที่แล้ว

    Nice, this topic deserves its own playlist. RCNN has so many component, you can make separated short video for each component, so it wont be overwhelming for the viewers.

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว

      Thanks, Muhammad. I actually want to create videos for other object detection algorithms as well and put them in a playlist. From my past experience and based on the videos I've seen, usually, long videos get more viewers. I already separated this video into different chapters and viewers can watch each one on their own time. It's a kinda subjective opinion I believe.

    • @zukofire6424
      @zukofire6424 ปีที่แล้ว

      @@soroushmehraban how about Yolo?

  • @Broadsword07
    @Broadsword07 2 ปีที่แล้ว

    This is great. Nice work!! Waiting for more such videos.

  • @navdeepsokhi2284
    @navdeepsokhi2284 4 หลายเดือนก่อน

    Very nicely explained with animation 💜

  • @jacobyoung2045
    @jacobyoung2045 2 ปีที่แล้ว

    Awesome video Now I can read the paper and use the video as a guide.

  • @anwarvic
    @anwarvic 2 ปีที่แล้ว +1

    Cool video! Keep them coming

  • @seokeonchoi4049
    @seokeonchoi4049 2 ปีที่แล้ว +1

    Cool! Nice work.

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว

      Thanks, Seokeon. I hope you find it useful.

  • @ericsy78
    @ericsy78 2 ปีที่แล้ว +1

    Cool! Nice work💥

  • @amirparsa_s
    @amirparsa_s 2 ปีที่แล้ว

    Good job Soroush, Very nice video! It helped me a lot specially to understand the mAP metric. Just Keep going :)

  • @charbelbm73
    @charbelbm73 2 ปีที่แล้ว +1

    Nice video! Keep up the great work

  • @celestchowdhury2605
    @celestchowdhury2605 หลายเดือนก่อน

    best explanation ever!

  • @sanurcucuyeva1958
    @sanurcucuyeva1958 6 หลายเดือนก่อน

    I really appreciate it, very good explanation. Thanks!

  • @Retburstjk
    @Retburstjk 11 หลายเดือนก่อน

    clean explanation give this man more sub !

  • @arefmotamedi7931
    @arefmotamedi7931 2 ปีที่แล้ว +1

    Well done. That was great

  • @zukofire6424
    @zukofire6424 ปีที่แล้ว

    Thanks very much for this, it's much clearer to me know (after starting from just the paper). (Edit : this Paper is clearly explained in every way)

    • @soroushmehraban
      @soroushmehraban  ปีที่แล้ว +1

      Thanks for the honest feedback 😃 looking at the previous videos posted, I’m not using that phrase anymore.

    • @zukofire6424
      @zukofire6424 ปีที่แล้ว

      @@soroushmehraban Oh I spoke too fast, (bc I watched some parts of the video several times, I thought you used the expression several times)... Yeah I take it back apologies, oc everyone can use this expression!

  • @MadinideAlwis
    @MadinideAlwis 7 หลายเดือนก่อน

    Very interesting! need more videos.

  • @nestedhuman8951
    @nestedhuman8951 11 หลายเดือนก่อน

    dude!!! that was such a nice explanation

  • @yassersouri6084
    @yassersouri6084 2 ปีที่แล้ว

    Great video. Good job. Request for follow up videos: Faster R-CNN, Mask R-CNN, DETR

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว

      Thanks, Yaser. I'll post them. But first I'll post Fast R-CNN

  • @kaan_aksit
    @kaan_aksit 2 ปีที่แล้ว +1

    Informative video!

  • @aliaghababaee9810
    @aliaghababaee9810 3 หลายเดือนก่อน

    great work!

  • @sarahsameh9994
    @sarahsameh9994 11 หลายเดือนก่อน

    thank you for your great explanation! keep going!

  • @hamidrezahemati8837
    @hamidrezahemati8837 8 หลายเดือนก่อน

    Great video. keep up the good work

  • @tandavme
    @tandavme 2 ปีที่แล้ว

    Great explanation, keep doing it!

  • @anupammishra8273
    @anupammishra8273 5 หลายเดือนก่อน

    Great explanation

  • @chayanshrangraj4298
    @chayanshrangraj4298 2 ปีที่แล้ว

    Nice job! Keep up the good work!

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว

      Thanks for the positive energy, Chayan!

  • @canxkoz
    @canxkoz 2 ปีที่แล้ว

    Congrats. Good work.

  • @santoshkamble1290
    @santoshkamble1290 ปีที่แล้ว

    Great explanation❤

  • @ishaanyadav6103
    @ishaanyadav6103 2 ปีที่แล้ว

    Nice one! Please make more

  • @rishidixit7939
    @rishidixit7939 หลายเดือนก่อน

    Very Nice Explanation
    Just one question they use SVM in the final steps to make prediction. Is that for the class prediction or for the Bounding Box prediction.
    Also how to we know that we need to predict (c + 1) classes ? Do we know beforehand what classes of objects are present in our image ?

  • @alirezaghaffartehrani1279
    @alirezaghaffartehrani1279 2 ปีที่แล้ว

    bright explanation Thanks

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว

      Thanks, Alireza. I hope you found it useful.

  • @zaidkhan2565
    @zaidkhan2565 2 หลายเดือนก่อน

    literally , Clearly EXPLAINED

  • @pouyaaminaie6041
    @pouyaaminaie6041 2 ปีที่แล้ว

    Nice work

  • @gaussic6985
    @gaussic6985 2 ปีที่แล้ว

    Keep up the good work

  • @lakshaydulani
    @lakshaydulani 2 ปีที่แล้ว

    good work

  • @imadsaddik
    @imadsaddik ปีที่แล้ว

    Thank you so much

  • @Javad-ek4es
    @Javad-ek4es ปีที่แล้ว

    Very nice! Thanks a lot! May you please upload your slides, too?

  • @TahaParsayan
    @TahaParsayan 27 วันที่ผ่านมา

    داداش دمت گرم

  • @alinaderiparizi7193
    @alinaderiparizi7193 2 ปีที่แล้ว

    Great Job, Can't wait to see more videos of you. Can you fix your microphone for next videos?

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว

      Thanks, Mohandes. I'll try enhancing the quality by changing my recording method but still it's not gonna be perfect. At least not in the first few videos.

  • @raj-nq8ke
    @raj-nq8ke ปีที่แล้ว

    Great.

  • @efeburako.9670
    @efeburako.9670 7 หลายเดือนก่อน

    nice one thx

  • @SalahChaibi-te3hq
    @SalahChaibi-te3hq 5 หลายเดือนก่อน

    Thank u

  • @huyinit
    @huyinit 11 หลายเดือนก่อน

    thank you so much , such an amazing video . Can i ask which tool/app you using for this slide? i love how they working

    • @soroushmehraban
      @soroushmehraban  11 หลายเดือนก่อน +1

      Thanks for the feedback Huy 🙂It's just a powerpoint.

  • @nestedhuman8951
    @nestedhuman8951 11 หลายเดือนก่อน +1

    what is the background music you are using in the video ?

    • @soroushmehraban
      @soroushmehraban  11 หลายเดือนก่อน

      I don't remember that was a long time ago. I'm not using any background music anymore.

  • @louisbertson
    @louisbertson 2 ปีที่แล้ว

    great

  • @sriharsha580
    @sriharsha580 2 ปีที่แล้ว

    How does NMS works in inference? As we won't be having ground truth

    • @soroushmehraban
      @soroushmehraban  2 ปีที่แล้ว

      That's a great question. I think I should have mentioned that. Our model might predict different bounding boxes pointing to the same object. In such a scenario, we do the following:
      1) Sort all the predicted bounding boxes based on the class score (In descending order).
      2) Pick the first bounding box that has the highest probability score.
      3) Compute the IoU of the selected bounding box with other bounding boxes pointing to the same class.
      4) If the IoU of any bounding box with this bounding box is larger than a threshold (such as 0.5), then we remove the bounding box having the lower class score.
      I hope it's clear.

    • @NagarajuSeru-rc7lb
      @NagarajuSeru-rc7lb ปีที่แล้ว

      ​@@soroushmehraban i think following conditions might not be sufficient, because even if we sort and pick highest one... again we left with question of all these are pointing to same object location or reference really in a image ? same object references might be at multiple places
      please clarify this doubt

    • @soroushmehraban
      @soroushmehraban  ปีที่แล้ว

      That's true we might have same objects at multiple places. let's say we have object A at location (x1, y1) and (x2, y2). for location (x1, y1) our model might predict multiple bounding boxes all refer to the object A. Out of all these bounding boxes we only keep the one that has the highest score and others if they have IOU higher than a threshold with this bounding box, we remove them. For object A at place (x2, y2), since it's in different area of the image, the IoU with the one having highest score is less than a threshold, so we keep the second one having the highest threshold and again others having IoU higher than a threshold, we remove them. @@NagarajuSeru-rc7lb

  • @NagarajuSeru-rc7lb
    @NagarajuSeru-rc7lb ปีที่แล้ว

    Very Nice.. Thank you so much....
    I have a question related to NMS... that
    As you explained about NMS, IOU of classified object regions will calculated over the ground truth value at the time of training and validation but what about at the time of inference ? since you have grouth truth values at time of train and validate only but not at inference.
    awaiting for your response.... thank you so much adavance

  • @AntonMorzhakov
    @AntonMorzhakov 7 วันที่ผ่านมา

    Really good tut, but background music is disturbing attenttion.

    • @soroushmehraban
      @soroushmehraban  7 วันที่ผ่านมา +1

      @@AntonMorzhakov Totally Agree. Removed it from next videos 👍

  • @SharondaWillett-l6b
    @SharondaWillett-l6b 5 หลายเดือนก่อน

    Kara Road

  • @RufinaSchexnayder-r1p
    @RufinaSchexnayder-r1p 4 หลายเดือนก่อน

    Bauch Estates

  • @tomactor50
    @tomactor50 7 หลายเดือนก่อน

    Fudge, you copy other's work

  • @yehanwasura
    @yehanwasura 2 ปีที่แล้ว +1

    Nais work man, keep this up, I wanna see moo 🤌❤️