The Plotting of Beautiful Curves (Euler Spirals and Sierpiński Triangles) - Numberphile

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 มิ.ย. 2024
  • This the first or two parts with Matt Henderson and his plotter... Part 2 (featuring Pi) is here: • Plotting Pi and Search...
    More links & stuff in full description below ↓↓↓
    Matt Henderson on Twitter (he posts lovely animations there): / matthen2
    Matt Henderson Numberphile Playlist: bit.ly/MattHendersonPlaylist
    Euler Spiral World Map: • A Strange Map Projecti...
    Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): bit.ly/MSRINumberphile
    We are also supported by Science Sandbox, a Simons Foundation initiative dedicated to engaging everyone with the process of science. www.simonsfoundation.org/outr...
    And support from The Akamai Foundation - dedicated to encouraging the next generation of technology innovators and equitable access to STEM education - www.akamai.com/company/corpor...
    NUMBERPHILE
    Website: www.numberphile.com/
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberphile_Sub
    Videos by Brady Haran
    Patreon: / numberphile
    Numberphile T-Shirts and Merch: teespring.com/stores/numberphile
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanblog.com/
    Sign up for (occasional) emails: eepurl.com/YdjL9
  • วิทยาศาสตร์และเทคโนโลยี

ความคิดเห็น • 325

  • @numberphile
    @numberphile  2 ปีที่แล้ว +45

    Part 2 (featuring Pi) is here: th-cam.com/video/tkC1HHuuk7c/w-d-xo.html

    • @user-dy9tf1ch1n
      @user-dy9tf1ch1n 2 ปีที่แล้ว +2

      He's boring

    • @glg1969
      @glg1969 2 ปีที่แล้ว

      Do you have a link to the Mathematica code for the turtle function, so I can show my son?

  • @mrphlip
    @mrphlip 2 ปีที่แล้ว +1116

    The most impressive part of this whole video is taking the paper off the plotter mid-print, showing it off, and then putting it back on the plotter and being able to continue the print with everything still lined up properly...

    • @PhilBoswell
      @PhilBoswell 2 ปีที่แล้ว +67

      I'm guessing there's something analogous to "drawing pin holes" so that he can just attach the paper in the same fashion as before: I would be croggled if it actually uses old tech like drawing pins ;-)

    • @williamchamberlain2263
      @williamchamberlain2263 2 ปีที่แล้ว +31

      @@PhilBoswell doesn't it just use the _POWER OF HIS MIND?_

    • @MichaelOfRohan
      @MichaelOfRohan 2 ปีที่แล้ว +8

      Im sure the paper was bucked against jigs on a couple adjacent sides

    • @MichaelOfRohan
      @MichaelOfRohan 2 ปีที่แล้ว +4

      I still love you though

    • @unvergebeneid
      @unvergebeneid 2 ปีที่แล้ว +2

      haha, ikr!

  • @alexelliott9733
    @alexelliott9733 2 ปีที่แล้ว +11

    1:41 - "a can of hyperbolic paraboloids" - that brought me back to my calculus class where my professor kept referring to that shape as a pringle

  • @TomRocksMaths
    @TomRocksMaths 2 ปีที่แล้ว +200

    I could watch that machine draw all day… sooooooo satisfying

    • @shruggzdastr8-facedclown
      @shruggzdastr8-facedclown 2 ปีที่แล้ว +7

      Hey, you're the Navier-Stokes enthusiast!
      Seriously though, Tom, when's your next turn to guest host a Numberphile video?

    • @maestroeragon
      @maestroeragon 2 ปีที่แล้ว +3

      Imagine if it could do tattoos! If you have any space left, I'm sure you'd have plenty of ideas for the machine haha

  • @talideon
    @talideon 2 ปีที่แล้ว +355

    For those without Mathematica, Python has a built-in turtle graphics module.

    • @BrianBlock
      @BrianBlock 2 ปีที่แล้ว +12

      Yeah, you can basically find a turtle library/function for any language these days, this is a classic :)

    • @DeclanMBrennan
      @DeclanMBrennan 2 ปีที่แล้ว +19

      @@BrianBlock Thanks Seymour Papert. You gave generations of kids some serious fun while they were learning through osmosis with the Logo Turtle and Language.

    • @flyingphysics9664
      @flyingphysics9664 2 ปีที่แล้ว +5

      Mathematica comes free on the Raspberry Pi...

    • @odraz0101
      @odraz0101 2 ปีที่แล้ว +2

      @@flyingphysics9664 is it fully functional Mathematica or is there limitations? Does it have access to knowledge base?

    • @gregwochlik9233
      @gregwochlik9233 2 ปีที่แล้ว +2

      I used that Python turtle module myself. I got it to draw the Sierpiński triangle myself. I picked up a recursive code on line.

  • @grumpyrocker
    @grumpyrocker 2 ปีที่แล้ว +87

    I remember programming the Turtle at school in the 1980s. We had a physical Turtle robot and we could get it to draw big images on the large sheets of paper on the floor.

    • @Baconlessness
      @Baconlessness 2 ปีที่แล้ว +2

      We had something similar that didn't draw anything. It looked like a small roomba that you could program with forwards, lefts and rights

    • @shruggzdastr8-facedclown
      @shruggzdastr8-facedclown 2 ปีที่แล้ว +3

      We had something similar to "Turtle" on our Apple II-Es when I took a basic/introductory computer skills workshop for a one-marking period elective back in eighth grade back in 1985/'86 where we would input some simple geometric instructions, and the cursor ("turtle") would draw triangles, squares, pentagons, hexagons, stars, etc.

    • @vigilantcosmicpenguin8721
      @vigilantcosmicpenguin8721 2 ปีที่แล้ว

      Dang, guess I missed out on the cool Turtle lessons as a student in the 2010s. We just programmed Turtle using the Java Virtual Machine.

    • @tfofurn
      @tfofurn 2 ปีที่แล้ว

      I participated in a summer camp with the turtle robot. The instructor laid a course out on the floor and we each programmed our solution. One person thought the movement units were feet instead of inches, so on their attempt, the turtle barely moved. The teacher announced that the solution looked correct other than the scaling.

  • @DqwertyC
    @DqwertyC 2 ปีที่แล้ว +52

    This is kind of amusing. I make Minecraft datapacks, usually based on fun math concepts. One of my main inspirations is this channel, and sometimes I'll try to recreate the processes in Numberphile videos in Minecraft. But this time, I posted a datapack about a topic just before you! My latest video was the Sierpinski Arrowhead Curve, which was generated with the same replacement method, and I'm working on a larger video about Lindenmayer (replacement) systems.

  • @Rubrickety
    @Rubrickety 2 ปีที่แล้ว +139

    Finally a Numberphile video with a plot. 😉

    • @lonestarr1490
      @lonestarr1490 2 ปีที่แล้ว +17

      ba dum tss

    • @Superphilipp
      @Superphilipp 2 ปีที่แล้ว +5

      I definitely watch for the plot

    • @_rlb
      @_rlb 2 ปีที่แล้ว +2

      You've got 42 likes which is the best number of likes.

    • @deltalima6703
      @deltalima6703 2 ปีที่แล้ว

      Video is boring but the peanut gallery is on point! :))

    • @aurelia8028
      @aurelia8028 2 ปีที่แล้ว

      lol

  • @RichardHolmesSyr
    @RichardHolmesSyr 2 ปีที่แล้ว +23

    Takes me back to the early 1970s when I was an undergraduate, tying up the (admittedly not much used) Hewlett-Packard XY plotter on a timesharing DECSystem 10 drawing dragon curves...

    • @JimC
      @JimC 2 ปีที่แล้ว +2

      I plotted dragon curves around the same time! On the plotter we used, you had to issue each drawing command twice to get perfect corners. That was because the pen decelerated at the very end of a command and that was easier than coming to an abrupt stop. I used just one command for each segment of dragon curves because perfect corners made it look like an incomplete grid, not a curve.
      I also drew a 31-gon and all its diagonals.

  • @rhoddryice5412
    @rhoddryice5412 2 ปีที่แล้ว +57

    Videos with Henderson are always great. Looking forward to part II.

  • @chinobambino5252
    @chinobambino5252 2 ปีที่แล้ว +116

    Amazing at 7:47 - very similar to the way DNA packs itself when condensing "coils of coils". Even the little ball-ish nodes look like the histone proteins that it coils around.

    • @Mathaveld
      @Mathaveld 2 ปีที่แล้ว +10

      Like a fractal, nature loves fractals :)

    • @matdex
      @matdex 2 ปีที่แล้ว +1

      I thought the same! Wonder if there's a connection.

    • @carvoloco4229
      @carvoloco4229 2 ปีที่แล้ว

      Yeah! It brought the same idea to my mind!

    • @chinobambino5252
      @chinobambino5252 2 ปีที่แล้ว +4

      @@matdex connection is probably just an optimal packing formation - every (human) cell has around 6 feet of DNA that it needs to store inside a tiny nucleus. Fun fact: with ~10 trillion cells in your body, thats 10 billion miles of DNA you're carrying right now.

    • @xenorac
      @xenorac 2 ปีที่แล้ว

      @@chinobambino5252 No wonder I weigh so much...

  • @rosiefay7283
    @rosiefay7283 2 ปีที่แล้ว +28

    Those spirals of spirals are beautiful! They remind me of how the continued fraction expantion of some real number x can be used to give more and more accurate rational approximations to x.

  • @DeclanMBrennan
    @DeclanMBrennan 2 ปีที่แล้ว +23

    Next step up: for the turtle: an automated combine harvester let loose in a very large corn field to produce a Sierpinski triangle - that would certainly upstage the usual crop circle. :-)

    • @shruggzdastr8-facedclown
      @shruggzdastr8-facedclown 2 ปีที่แล้ว

      I imagine that such a field would have to be super flat as I'd think any irregularities in the topography would likely throw off the combine-plotter

    • @DeclanMBrennan
      @DeclanMBrennan 2 ปีที่แล้ว +2

      @@shruggzdastr8-facedclown Some of the modern combines have impressive technology for very accurately locating themselves in real time. Makes for a very expensive turtle though. :-)

    • @DickHolman
      @DickHolman 2 ปีที่แล้ว

      @@shruggzdastr8-facedclown
      As long as the slopes are within the machines' physical limits, no problem.
      GPS, especially with local transponders & on-board physical sensors in the control-loop, are centimetre-accurate. And, you can remote-input driving instruction into the really expensive ones. :)
      Can anyone hack a combine?

    • @ideallyyours
      @ideallyyours 2 ปีที่แล้ว +1

      I would recommend using a Hilbert Curve ruleset instead, since fields tend to be made up of parallel rows and more closely resemble a square (or rectangle, which can be thought of as a series of (overlapping) squares.)

  • @vynce9045
    @vynce9045 2 ปีที่แล้ว +4

    Honestly, this kind of video is the core reason I like this channel

  • @awandererfromys1680
    @awandererfromys1680 2 ปีที่แล้ว +12

    Man, I remember Turtle from computer class waaay back in 1989. Then last year I discovered Python comes with a simple Turtle implementation. So now I guess I only have to build a plotter lol!
    Really cool this program is still around.

  • @same9643
    @same9643 2 ปีที่แล้ว +14

    Matt Henderson Numberphiles are definitely my new favourite Numberphiles

    • @numberphile
      @numberphile  2 ปีที่แล้ว +10

      You'll love the second part of this one!

    • @Zveebo
      @Zveebo 2 ปีที่แล้ว

      I agree - great topics and very interesting. Plus his accent is very relaxing to listen to ☺️

    • @user-ud6bz6wp9s
      @user-ud6bz6wp9s 2 ปีที่แล้ว

      @@numberphile second part?) That's awesome!

  • @WAMTAT
    @WAMTAT 2 ปีที่แล้ว +5

    beautiful mathematics

  • @QuantumHistorian
    @QuantumHistorian 2 ปีที่แล้ว +32

    Ok, but why does the substitution trick work? I can kind of see that it replicates the nested symmetry of the shape, but it would be really nice to see a proof of it. Numberphile has recently been stopping _just_ short of the proper maths itself, which is a bit of a shame.

    • @ideallyyours
      @ideallyyours 2 ปีที่แล้ว +3

      It's not a trick so much as it's a rule. It's an example of Lindenmeyer systems (L-systems) that use rules like these to generate structures with some self-similarity or of a recursive nature. In addition to Forward and Turn (+/-) rules, there are also Scale (multiply/divide length), Scale (multiply/divide angle), Push/Pop (for generating branches), Trim (ends a branch), and in 3D you also have additional rules to deal with line thickness.
      The rules in this example are specifically designed to create self-similarity, which is not a guaranteed result of any combination of L-system rules.

  • @zionklinger2264
    @zionklinger2264 2 ปีที่แล้ว +7

    Love it when I see my area of research in a numberphile video! Lindenmeyer systems which are what the guest used to generate a sierpinski triangle! Personally I'm using them to generate 3D trees!!

  • @rujon288
    @rujon288 2 ปีที่แล้ว +4

    Watching these videos is so relaxing

  • @SoleaGalilei
    @SoleaGalilei 2 ปีที่แล้ว +5

    The spirals of spirals reminded me of how if you zoom out far enough in space, you see that galaxies are grouped into clusters and superclusters of galaxies.

  • @effingineffable685
    @effingineffable685 2 ปีที่แล้ว +5

    Yay pretty maths drawings!

  • @davidhutchins8144
    @davidhutchins8144 2 ปีที่แล้ว +3

    I absolutely love this and all of Matt's videos. Cheers!

  • @MysliusLT
    @MysliusLT 2 ปีที่แล้ว +2

    Matt was amazing in this video. The articulation, the body language, the work. More videos please.😊

  • @misteragb7558
    @misteragb7558 2 ปีที่แล้ว +2

    To me, this is pure art and I really mean that, especially what he shows in part 2

  • @veggiet2009
    @veggiet2009 2 ปีที่แล้ว +1

    I love how in this video everything is regular and orderly, even when it seems chaotic it leads to something orderly. And the next video is just straight random chaos.

  • @Brontalo
    @Brontalo 2 ปีที่แล้ว +55

    Would be cool to expand on lindenmayer systems a lot more
    and show how they can mimic treelike fractals.
    An L-system i found is
    A -> - C++A
    B -> B - - C+
    C -> D
    D -> AB
    you start with AB and + & - is a 45° turn.

    • @ideallyyours
      @ideallyyours 2 ปีที่แล้ว

      C -> D seems like a redundant step, you could replace it with C -> AB

    • @DaedalusYoung
      @DaedalusYoung 2 ปีที่แล้ว +4

      @@ideallyyours Try it, see if there's a difference skipping the D.

    • @RibusPQR
      @RibusPQR 2 ปีที่แล้ว

      Don't skip D-day.

    • @Brontalo
      @Brontalo 2 ปีที่แล้ว

      I think in the limit they look the same with or without the D.
      But with D it's much easier to draw by hand on squared paper. On that the diagonal lines are longer by sqrt 2, but that doesn't change the original scaling much.

    • @ideallyyours
      @ideallyyours 2 ปีที่แล้ว +1

      @@Brontalo Maybe you found an elegant way to "time" when rules are applied by adding a holding step C -> D, so that different instances of C/D are substituted which could give a more organic and less layered look.

  • @Philip_J
    @Philip_J 2 ปีที่แล้ว +12

    Don't think I've been this early to a video before.

  • @danielstephenson7558
    @danielstephenson7558 2 ปีที่แล้ว +1

    One of the most satisfying things I've ever printed is the Sierpinski Pyramid. Never had to take it's 'pen' off the paper the entire way up the object.

  • @didiermuller5797
    @didiermuller5797 2 ปีที่แล้ว +2

    Thank you Numberphile! After seeing this video I made a version of it on Scratch. Pretty fun to show how it works to my little student and how math can be beautiful without being useful.

  • @gh0stdog89
    @gh0stdog89 2 ปีที่แล้ว +1

    The turtle gave me a great sense of nostalgia

  • @laurilehtiaho9618
    @laurilehtiaho9618 2 ปีที่แล้ว +2

    When I was in high school, I used to waste my French classes plotting the Dragon Curve on a paper like this. I would have pages of L's and R's marking left and right turns.
    Turns out I am both retaking French classes, and bumping to fractal drawings again - almost 20 years later. Now I am focusing a bit more on my French, though.

  • @po-chiachen2990
    @po-chiachen2990 2 ปีที่แล้ว +1

    A neat thing about these plots for rational numbers is that your turtle will either run around in circles or run off forever in a set direction, depending on the fraction you give and the base. It can never do things like spiral outwards or walk pseudo randomly from a rational number input ; the exact fraction simply affects how much dawdling and pattern making it does along the way.

  • @Snowflake_tv
    @Snowflake_tv 2 ปีที่แล้ว +3

    I have been waiting for your new video! Thank you so much.

    • @numberphile
      @numberphile  2 ปีที่แล้ว +7

      Part 2 of this one will knock your mathematical socks off!

    • @Snowflake_tv
      @Snowflake_tv 2 ปีที่แล้ว +1

      @@numberphile 🧦👟 kick off! Yay!

  • @n20games52
    @n20games52 2 ปีที่แล้ว

    Very fun to watch the machine work and the patterns to emerge.

  • @HorvathDenis
    @HorvathDenis 2 ปีที่แล้ว

    It inspired me in many ways. Thank you very much for sharing this video.

  • @jackwisniewski3859
    @jackwisniewski3859 2 ปีที่แล้ว +14

    turtle graphics is my favorite python module, i love it a lot, its so very simple, powerful and fun i even have a yt video i made using it that im actually pretty proud of

  • @stefanf922
    @stefanf922 2 ปีที่แล้ว +4

    Would be cool to see a dragon curve made from Euler spirals.

  • @SquirrelASMR
    @SquirrelASMR 2 ปีที่แล้ว +1

    I really like this guy's math visualization animations

  • @telotawa
    @telotawa 2 ปีที่แล้ว +12

    oh hey! i remember doing stuff like this in Scratch lol

  • @benwilletts8250
    @benwilletts8250 2 ปีที่แล้ว

    Thanks for the upload. Very interesting indeed.

  • @kees-janhermans910
    @kees-janhermans910 2 ปีที่แล้ว +1

    If you follow the output of an input of the Zeta function, especially for the higher imaginary parts of the input, and especially between 0-1 for the real part, you get a lot of Euler spirals as well.

  • @drenz1523
    @drenz1523 2 ปีที่แล้ว +3

    Remembered something like this years ago, i think it was the square squigle fractal vid.

  • @davidgillies620
    @davidgillies620 2 ปีที่แล้ว +2

    It's amazing what you can do with recursive formal grammars. Douglas Hofstadter goes into great detail in this vein in _Gödel, Escher, Bach_ .

    • @YerpyMoose
      @YerpyMoose 2 ปีที่แล้ว

      bloop, floop, gloop

  • @johnchessant3012
    @johnchessant3012 2 ปีที่แล้ว +2

    Love this guy! Also I want a whole video of just that machine

    • @zafishguy5166
      @zafishguy5166 2 ปีที่แล้ว +1

      I need this too. I also want the exact program he used so I can play around with it.

  • @mebamme
    @mebamme 2 ปีที่แล้ว +9

    After a past video that called it "yooler spiral", this is the long-awaited redemption video.

  • @SquirrelASMR
    @SquirrelASMR 2 ปีที่แล้ว +1

    I wanna see these run forever

  • @abelnyamori
    @abelnyamori 2 ปีที่แล้ว

    Please post the full video of the machine drawing the curve somewhere. That was amazing

  • @PushyPawn
    @PushyPawn 2 ปีที่แล้ว +2

    If he'd made the turtle a rabbit, that printer would have been much faster.

  • @MariusSc
    @MariusSc 2 ปีที่แล้ว

    That’s cool! Going to try this out myself :)

  • @juansalvemini9270
    @juansalvemini9270 2 ปีที่แล้ว +8

    Really appreciate when you don´t just show the pretty picture, but take the time to build up to it from the basic rules. All that complexity from two simple statements!

  • @stephengraves9370
    @stephengraves9370 2 ปีที่แล้ว +1

    My favorite part of this video is the Pilot pen that the machine draws with

  • @bloomp7999
    @bloomp7999 2 ปีที่แล้ว +1

    The turtle pattern reproducing itself in high iterations is amazing
    I Wonder what it looks like in billions of iterations

  • @goodboi650
    @goodboi650 2 ปีที่แล้ว +3

    I knew all those repressed LOGO memories would come in handy someday

  • @MichaelOfRohan
    @MichaelOfRohan 2 ปีที่แล้ว

    I love this channel

  • @judychurley6623
    @judychurley6623 2 ปีที่แล้ว +1

    The British artist Harold Cohen in the 70s had produced "Aaron" an expert system that produced important exhibitions (at the Tate Modern and elsewhere) producing large-scale artworks using a 'turtle' - but did not use pre-determined forms. Really interesting.

  • @_modiX
    @_modiX 2 ปีที่แล้ว +3

    6:05 1.0456 is beautiful

  • @coreyburton8
    @coreyburton8 2 ปีที่แล้ว

    thanks so much that was great

  • @antonmiserez934
    @antonmiserez934 2 ปีที่แล้ว +3

    Did he just call Pringles hyperbolic paraboloids at 1:42? I'm gonna use that...

  • @AppleoTexza
    @AppleoTexza 2 ปีที่แล้ว +3

    It is not a case of chaos....if we repeat it enough times and zoom out enough we can see that it essentially will be the Euler spiral nested on itself. we need theta to be an irrational number for a chaotic patterns with different degrees of chaos maximum being with the golden ratio i think

  • @SaveSoilSaveSoil
    @SaveSoilSaveSoil 2 ปีที่แล้ว +2

    Love the spiral of spirals!!! For Sierpinski, what happens when you do other angle pairs except +/- pi/3?

  • @CHIEF_420
    @CHIEF_420 2 ปีที่แล้ว

    Thanks!

  • @MutantMonke
    @MutantMonke 2 ปีที่แล้ว

    I remember learning about logo in 3rd grade. Drawing stuff was so good and fun as hell.

  • @kudosdc
    @kudosdc 2 ปีที่แล้ว

    More Matt please

  • @topilinkala1594
    @topilinkala1594 2 ปีที่แล้ว

    I was in a course where we were studying computer programing and the system had turtle graphics package. Our mid term test was to program a clock that showed hours, minutes & seconds. I was the only one who programmed an analog clock. To get the hands moving I drew the first in on (B&W displays that time & age) and then off moved the angle and drew them on etc. Nice excercise but the teacher was not excited as the graphics were supposed to be the next part of the course.

  • @abox5184
    @abox5184 2 ปีที่แล้ว +1

    Put that in an art gallery and it'll be better than most of the stuff there

  • @shruggzdastr8-facedclown
    @shruggzdastr8-facedclown 2 ปีที่แล้ว +1

    That Euler spiral done to 1,000,000 iterations looks reminiscent of the dragon curve to me

  • @simonberger539
    @simonberger539 2 ปีที่แล้ว

    love it !

  • @meguellatiyounes8659
    @meguellatiyounes8659 2 ปีที่แล้ว +3

    euler spiral used in transportation engineer .like highway and road design

  • @hepiik.8822
    @hepiik.8822 2 ปีที่แล้ว

    I appreciate that you wrote Sierpiński correctly with ń, it isn't much nor a big thing, but it warms me a bit (im used too see polish surnames without polish letters)
    And overall, cool video!

  • @minkuspower
    @minkuspower 2 ปีที่แล้ว

    man i love Turtle! so great to see it used like this :D

  • @UncleKennysPlace
    @UncleKennysPlace 2 ปีที่แล้ว +1

    This reminds me of writing HPGL scripts back in the day, to run my serial plotter.

  • @jareknowak8712
    @jareknowak8712 2 ปีที่แล้ว

    I remember me programming the Turtle in the 1997 in the beginning of high school in Poland.
    Quarter of century ago.
    It was the first and the last time i had something in common with programming.
    I perfectly remember each and every command, just like it was yesterday, it was fascinating.

  • @juanluisclaure6485
    @juanluisclaure6485 2 ปีที่แล้ว

    Gracias por tanto. Saludos from Bo

  • @PhilBoswell
    @PhilBoswell 2 ปีที่แล้ว +3

    I want a pen plotter that doesn't cost an arm or a leg, is that even possible nowadays? We used to have an HP plotter (I want to say something like 7475?) but I don't know where that went and I'll bet USB won't touch it :-(

  • @KurtSchwind
    @KurtSchwind 2 ปีที่แล้ว +1

    @11:32 "It's within the rules of Numberphile". Then again, so is the Parker's Square.😀

  • @japhethkallombo3820
    @japhethkallombo3820 2 ปีที่แล้ว

    I'm a biochemist and one of the Euler spirals you showed at 8:23 looks similar to the super packaging of genomic DNA in eukaryotic cells

  • @05degrees
    @05degrees 2 ปีที่แล้ว

    The spirals of higher order were a surprise! Though not too strange in retrospect.

  • @talideon
    @talideon 2 ปีที่แล้ว

    Another fun thing about the Sierpinski gasket is that it's related to the exclusive-OR operation.

  • @user-oq9vu9xg8o
    @user-oq9vu9xg8o 2 ปีที่แล้ว

    Love this cute thing ! You may be interested to try the angle list [1:0.99:100000] and Boom, a symmetric and beautiful pattern !

  • @dedwarmo
    @dedwarmo 2 ปีที่แล้ว +2

    Has Part 2 been posted yet?

  • @luppa79
    @luppa79 2 ปีที่แล้ว

    Must be a high quality pen on that plotter!

  • @user255
    @user255 2 ปีที่แล้ว +2

    Please post the spirals source code!
    5:08 I want to see animation, where theta is increased very slowly (n being constant).

  • @yashrawat9409
    @yashrawat9409 2 ปีที่แล้ว +1

    Is that a V7 pilot pen ?
    Where is the part 2 coming by the way :)?

  • @g0lfl3fl3ur
    @g0lfl3fl3ur 2 ปีที่แล้ว +1

    Not first but still glad to have gotten a notification!

  • @matthewwilson8292
    @matthewwilson8292 2 ปีที่แล้ว

    Andy Murray’s secret second brother ;) - amazing video!

  • @supergsx
    @supergsx 2 ปีที่แล้ว +1

    These Euler spirals appear in the partial sums of the Riemann Zeta Function.

  • @ambrosethomson750
    @ambrosethomson750 2 ปีที่แล้ว

    "A can of hyperbolic parabaloids." Amazing

  • @paulbuchinger4585
    @paulbuchinger4585 2 ปีที่แล้ว

    that was epic

  • @cameronbaydock5712
    @cameronbaydock5712 2 ปีที่แล้ว

    Part 2 pls Brady

  • @frankharr9466
    @frankharr9466 2 ปีที่แล้ว

    That is fascinating! :)
    I

  • @MrDazzlerdarren
    @MrDazzlerdarren 2 ปีที่แล้ว

    Sounds like LISP, played with it on the BBC and had a copy on the Amiga too :-)

  • @Frownlandia
    @Frownlandia 2 ปีที่แล้ว +1

    Is there a way to construct a fractal Euler-spiral-of-Euler-spirals and derive a theta value from that?

  • @meowsqueak
    @meowsqueak 2 ปีที่แล้ว

    This reminds me of Logo - a programming language for telling the turtle what to do.

  • @flamencoprof
    @flamencoprof 2 ปีที่แล้ว

    I am getting flashbacks to going mad on the first computer I owned, the C64, and programming fractals of various kinds I couldn't even print, nor save, just change a parameter and marvel at what might take another day to appear. I resorted to opcode subroutines to speed it up, but by 1995 or so, even Basic was now faster than that.

  • @scottmuck
    @scottmuck 2 ปีที่แล้ว +1

    You’ve created some very valuable brown paper, if they’re for sale!

  • @mrdrbernd
    @mrdrbernd 2 ปีที่แล้ว

    He seems to be using an AxiDraw (or clone). You can do these graphs in huge very easily with a polargraph (or makelangelo). Very simple to build and 1 m x 1 m size is easily achievable and very cheap to build.
    Had plenty of hours of fun so far with it.

  • @chrisakaschulbus4903
    @chrisakaschulbus4903 2 ปีที่แล้ว

    Good ol' turtles... i know the from a minecraft mod where you can program in lua :D
    They can break and place blocks, move around and turn. It's a lot of fun.

  • @wyboo2019
    @wyboo2019 2 หลายเดือนก่อน

    im really curious about how you could derive the continuous version of the euler spiral from this discrete version.
    for example, turning 1 degree every 1 unit moved, we could find some recurrence relation (difference equation hopefully?) describing this, and then look at how that relation changes for turning 0.5 degrees every 0.5 units moved, turning 0.25 degrees every 0.25 units moved. i may do this later

  • @jamielondon6436
    @jamielondon6436 2 ปีที่แล้ว

    "[…] from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved."