Integral of cos(ln(x)) (by parts)

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ธ.ค. 2024

ความคิดเห็น • 105

  • @IntegralsForYou
    @IntegralsForYou  4 ปีที่แล้ว +1

    🔍 𝐀𝐫𝐞 𝐲𝐨𝐮 𝐥𝐨𝐨𝐤𝐢𝐧𝐠 𝐟𝐨𝐫 𝐚 𝐩𝐚𝐫𝐭𝐢𝐜𝐮𝐥𝐚𝐫 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥? 𝐅𝐢𝐧𝐝 𝐢𝐭 𝐰𝐢𝐭𝐡 𝐭𝐡𝐞 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥 𝐬𝐞𝐚𝐫𝐜𝐡𝐞𝐫:
    ► Integral searcher 👉integralsforyou.com/integral-searcher
    🎓 𝐇𝐚𝐯𝐞 𝐲𝐨𝐮 𝐣𝐮𝐬𝐭 𝐥𝐞𝐚𝐫𝐧𝐞𝐝 𝐚𝐧 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐦𝐞𝐭𝐡𝐨𝐝? 𝐅𝐢𝐧𝐝 𝐞𝐚𝐬𝐲, 𝐦𝐞𝐝𝐢𝐮𝐦 𝐚𝐧𝐝 𝐡𝐢𝐠𝐡 𝐥𝐞𝐯𝐞𝐥 𝐞𝐱𝐚𝐦𝐩𝐥𝐞𝐬 𝐡𝐞𝐫𝐞:
    ► Integration by parts 👉integralsforyou.com/integration-methods/integration-by-parts
    ► Integration by substitution 👉integralsforyou.com/integration-methods/integration-by-substitution
    ► Integration by trig substitution 👉integralsforyou.com/integration-methods/integration-by-trig-substitution
    ► Integration by Weierstrass substitution 👉integralsforyou.com/integration-methods/integration-by-weierstrass-substitution
    ► Integration by partial fraction decomposition 👉integralsforyou.com/integration-methods/integration-by-partial-fraction-decomposition
    👋 𝐅𝐨𝐥𝐥𝐨𝐰 @𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬𝐟𝐨𝐫𝐲𝐨𝐮 𝐟𝐨𝐫 𝐚 𝐝𝐚𝐢𝐥𝐲 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥! 😉
    📸 instagram.com/integralsforyou/

  • @javierfelipeduartecano1740
    @javierfelipeduartecano1740 5 ปีที่แล้ว +10

    Even without words, it is better than others.

  • @gourangabiswas3377
    @gourangabiswas3377 5 ปีที่แล้ว +12

    Thank u. This question came in jee Mains exam of India

  • @lipikadas6112
    @lipikadas6112 5 ปีที่แล้ว +6

    Thanks a lot... I just got confused before watching this video... This clarified me... :-D

    • @IntegralsForYou
      @IntegralsForYou  5 ปีที่แล้ว +2

      I am very happy to know it! Enjoy the channel! 😉

  • @virajpatil1017
    @virajpatil1017 6 หลายเดือนก่อน +2

    What about t = Inx

    • @IntegralsForYou
      @IntegralsForYou  6 หลายเดือนก่อน

      Hi! It works too! You will end up doing integration by parts with a different expression:
      Integral of cos(ln(x)) dx =
      Substitution:
      t = ln(x) ==> e^t = x
      dt = 1/x dx = 1/e^t dx ==> (e^t)dt = dx
      = Integral of cos(t) (e^t)dt =
      = Integral of (e^t)*cos(t) dt =
      = th-cam.com/video/w2U98_vQPsY/w-d-xo.html =
      = (1/2)(e^t)(sin(t) + cos(t)) =
      = (1/2)*x(sin(ln(x)) + cos(ln(x))) =
      = (x/2)*(sin(ln(x)) + cos(ln(x))) + C
      💪

  • @tatianamonsalvecardona5898
    @tatianamonsalvecardona5898 8 ปีที่แล้ว +17

    I LOVE YOUUU, MASSIVE THANK YOUU!!

    • @IntegralsForYou
      @IntegralsForYou  8 ปีที่แล้ว +6

      Massive "de nada"'s!! :-D Se agradece mucho comentarios como el tuyo!

  • @yaxylin9809
    @yaxylin9809 2 ปีที่แล้ว +1

    i go to uw and this video helped me!

  • @geovanisantos7833
    @geovanisantos7833 3 ปีที่แล้ว +1

    a thank you to you from Brazil, helped me a lot

  • @DanishAnsari2351
    @DanishAnsari2351 ปีที่แล้ว +1

    You have help me a lot for my calculus exam. Thank you very much

    • @IntegralsForYou
      @IntegralsForYou  ปีที่แล้ว

      My pleasure!! Good luck for the exam! 💪

  • @viniciusjesus6725
    @viniciusjesus6725 8 ปีที่แล้ว +1

    OH MY GOD!!! I can't belive that I understand it. Man you're THE MAN!

    • @IntegralsForYou
      @IntegralsForYou  8 ปีที่แล้ว +1

      hehe thank you for you comment :D :D

  • @brdaniel21
    @brdaniel21 8 ปีที่แล้ว +1

    GRAZIE FRATELLO !
    ho finalmente capito l'integrazione per parti

    • @IntegralsForYou
      @IntegralsForYou  8 ปีที่แล้ว +2

      Ciao! Grazie a te per guardare il video! In questa playlist trovi tutti gli integrali per parti che ho fatto.
      th-cam.com/play/PLpfQkODxXi4-GdH-W7YvTuKmK_mFNxW_h.html

  • @vijayalakshmidunga2948
    @vijayalakshmidunga2948 4 ปีที่แล้ว +3

    Keep on doing these vedios bro...so helpful!!!

    • @IntegralsForYou
      @IntegralsForYou  4 ปีที่แล้ว

      I will! Thank you for your comment! 😊

  • @dappermink
    @dappermink 7 ปีที่แล้ว +5

    x^i = e^(i.ln(x)) = cos(ln(x))+i.sin(ln(x))
    Do the integral of x^i using the power rule (x^1+i/(1+i)) and extract its real part, you'll get the answer to integral(cos(ln(x))) :)

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว +2

      Hi Quentin! I agree with you, but I try not to use complex numbers. Thank you, I didn't know we can do it as you say! :-D

    • @dappermink
      @dappermink 7 ปีที่แล้ว +2

      You're welcome, I just wanted to share this strategy as I find it impressively beautiful :)
      But the other one you used it just as nice too!! :')

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว +1

      ;-D

  • @ضحىادير
    @ضحىادير 4 ปีที่แล้ว

    best channel i have ever seen

    • @IntegralsForYou
      @IntegralsForYou  4 ปีที่แล้ว

      Woah! Thank you very much!! 😀😀

  • @Dan-tr4ch
    @Dan-tr4ch ปีที่แล้ว +1

    Thank you so much !!!

  • @sergiodiaz2201
    @sergiodiaz2201 6 ปีที่แล้ว +3

    Que increible te encontre por google poniendo el ejercicio jeje, muchas gracias

    • @IntegralsForYou
      @IntegralsForYou  6 ปีที่แล้ว

      De nada! Me alegro que te sirviera! ;-D

  • @megoboom17
    @megoboom17 3 ปีที่แล้ว

    lord bless this channel

  • @nehaagarwal6449
    @nehaagarwal6449 3 ปีที่แล้ว +1

    Please answer the integral of e^x sin^2x dx

    • @IntegralsForYou
      @IntegralsForYou  3 ปีที่แล้ว

      Hi! Here you have the solution:
      Integral of (e^x)sin^2(x) dx =
      = Integral of (e^x)( (1/2)(1-cos(2x)) ) dx =
      = (1/2)Integral of ( e^x - (e^x)cos(2x) ) dx =
      = (1/2)( Integral of e^x dx - Integral of (e^x)cos(2x) dx ) =
      Integral of (e^x)cos(2x) dx =
      Parts: Integral of u dv = uv - Integral of v du
      u = e^x ==> du = (e^x)dx
      dv = cos(2x)dx ==> v = (1/2)sin(2x)
      = (e^x)(1/2)sin(2x) - Integral of (1/2)sin(2x) (e^x)dx =
      = (1/2)(e^x)sin(2x) - (1/2)Integral of (e^x)sin(2x) dx =
      Parts: Integral of u dv = uv - Integral of v du
      u = e^x ==> du = (e^x)dx
      dv = sin(2x)dx ==> v = (-1/2)cos(2x)
      = (1/2)(e^x)sin(2x) - (1/2)( (e^x)(-1/2)cos(2x) - Integral of (-1/2)cos(2x) (e^x)dx ) =
      = (1/2)(e^x)sin(2x) - (1/2)( (-1/2)(e^x)cos(2x) + (1/2)Integral of (e^x)cos(2x) dx ) =
      = (1/2)(e^x)sin(2x) + (1/4)(e^x)cos(2x) - (1/4)Integral of (e^x)cos(2x) dx
      ==>
      Integral of (e^x)cos(2x) dx = (1/2)(e^x)sin(2x) + (1/4)(e^x)cos(2x) - (1/4)Integral of (e^x)cos(2x) dx
      (1/4)Integral of (e^x)cos(2x) dx + Integral of (e^x)cos(2x) dx = (1/2)(e^x)sin(2x) + (1/4)(e^x)cos(2x)
      (5/4)Integral of (e^x)cos(2x) dx = (1/2)(e^x)sin(2x) + (1/4)(e^x)cos(2x)
      Integral of (e^x)cos(2x) dx = (4/5)( (1/2)(e^x)sin(2x) + (1/4)(e^x)cos(2x) )
      Integral of (e^x)cos(2x) dx = (2/5)(e^x)sin(2x) + (1/5)(e^x)cos(2x) + C
      = (1/2)( Integral of e^x dx - Integral of (e^x)cos(2x) dx ) =
      = (1/2)[ e^x - ( (2/5)(e^x)sin(2x) + (1/5)(e^x)cos(2x) ) ] =
      = (1/2)[ e^x - (2/5)(e^x)sin(2x) - (1/5)(e^x)cos(2x) ] =
      = (1/2)(e^x) - (1/5)(e^x)sin(2x) - (1/10)(e^x)cos(2x) + C
      Hope it helped! ;-D

  • @David-ri2tw
    @David-ri2tw 2 ปีที่แล้ว +1

    why is it x/2?

    • @IntegralsForYou
      @IntegralsForYou  2 ปีที่แล้ว +2

      Hi! I'm sorry, I did the last step very quick... Let me explain it here with more detail:
      2*Integral of cos(ln(x)) dx = x*cos(ln(x)) + x*sin(ln(x))
      2*Integral of cos(ln(x)) dx = x*[cos(ln(x)) + sin(ln(x))]
      Integral of cos(ln(x)) dx = ( x*[cos(ln(x)) + sin(ln(x))] )/2
      Integral of cos(ln(x)) dx = (x/2)*[cos(ln(x)) + sin(ln(x))] + C
      Hope it is clear now! 💪

  • @torleifv3335
    @torleifv3335 4 ปีที่แล้ว

    ありがとうございました!

  • @picomarumbi
    @picomarumbi 7 ปีที่แล้ว

    Thank You, very much. From Brazil

  • @afifahamid8840
    @afifahamid8840 6 ปีที่แล้ว +1

    thank uh so much your methods are very helpful :)

  • @penamorijuanalejandro6729
    @penamorijuanalejandro6729 5 ปีที่แล้ว +1

    muchas gracias, gringo!!

  • @yaredreinarz3244
    @yaredreinarz3244 7 ปีที่แล้ว +1

    great video very clear. whats your area?

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว +1

      Thanks Yared Reinarz! Sorry, I only answer questions related to this channel... Anyway, thanks for your comment!

    • @yaredreinarz3244
      @yaredreinarz3244 7 ปีที่แล้ว +1

      ok sorry. just wanted to clarify that with area i meant occupation. (math teacher, physic, engineer, etc.)

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว +2

      Hi Yared! Don't worry, I understand... In fact I would really like to answer you, but when I created this channel I decided to not answering personal questions. Sorry again! ;-D

  • @gattuso48
    @gattuso48 2 ปีที่แล้ว

    thank you so much.

  • @melissagallegos5377
    @melissagallegos5377 7 ปีที่แล้ว +2

    Gracias! Ahora entiendo cómo hacerlo

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว +1

      De nada Melissa! Es un verdadero placer :D

  • @BeekersSqueakers
    @BeekersSqueakers 3 ปีที่แล้ว +1

    God send.

  • @sutetgenkproduction1361
    @sutetgenkproduction1361 4 ปีที่แล้ว +1

    Thank u, Sir

  • @duotheowl
    @duotheowl 3 ปีที่แล้ว +1

    W‼️😩

  • @robertjimenez4901
    @robertjimenez4901 8 ปีที่แล้ว

    ohhhh thank you so much mate!!

  • @kbee9416
    @kbee9416 3 ปีที่แล้ว +1

    thank u

    • @IntegralsForYou
      @IntegralsForYou  3 ปีที่แล้ว +1

      My pleasure! 😊

    • @kbee9416
      @kbee9416 3 ปีที่แล้ว +1

      You helped me solve it easily

    • @IntegralsForYou
      @IntegralsForYou  3 ปีที่แล้ว +1

      @K Bee I become prouder of this channel when I read comments like yours 😊This channel was created to help people to solve integrals and I think it is doing it successfully! 💪💪

    • @kbee9416
      @kbee9416 3 ปีที่แล้ว

      Keep doing broooo👍👍👍

  • @ahmadrezamahmoudi8664
    @ahmadrezamahmoudi8664 4 ปีที่แล้ว

    hello, please answei of integral cos(2Lnx) dx

    • @IntegralsForYou
      @IntegralsForYou  4 ปีที่แล้ว

      Integral of cos(2ln(x)) dx =
      Substitution:
      t = ln(x) ==> e^t = x
      dt = 1/x dx = 1/e^t dx ==> (e^t)dt = dx
      = Integral of cos(2t) (e^t)dt
      = Integral of (e^t)cos(2t)
      Parts: Integral of u dv = uv - Integral of v du
      u = e^t ==> du = (e^t)dt
      dv = cos(2t) dt ==> v = (1/2)sin(2t) dt
      = (e^t)(1/2)sin(2t) - Integral of (e^t)(1/2)sin(2t) dt =
      = (1/2)(e^t)sin(2t) - (1/2)Integral of (e^t)sin(2t) dt =
      Parts: Integral of u dv = uv - Integral of v du
      u = e^t ==> du = (e^t)dt
      dv = sin(2t) dt ==> v = (-1/2)cos(2t) dt
      = (1/2)(e^t)sin(2t) - (1/2)[ (e^t)(-1/2)cos(2t) - Integral of (e^t)(-1/2)cos(2t) dt ] =
      = (1/2)(e^t)sin(2t) - (1/2)[ (-1/2)(e^t)cos(2t) + (1/2)Integral of (e^t)cos(2t) dt ] =
      = (1/2)(e^t)sin(2t) + (1/4)(e^t)cos(2t) - (1/4)Integral of (e^t)cos(2t) dt
      ==>
      Integral of (e^t)cos(2t) dt = (1/2)(e^t)sin(2t) + (1/4)(e^t)cos(2t) - (1/4)Integral of (e^t)cos(2t) dt
      Integral of (e^t)cos(2t) dt + (1/4)Integral of (e^t)cos(2t) dt = (1/2)(e^t)sin(2t) + (1/4)(e^t)cos(2t)
      (5/4)Integral of (e^t)cos(2t) dt = (1/2)(e^t)sin(2t) + (1/4)(e^t)cos(2t)
      Integral of (e^t)cos(2t) dt = (4/5)[ (1/2)(e^t)sin(2t) + (1/4)(e^t)cos(2t) ]
      Integral of (e^t)cos(2t) dt = (2/5)(e^t)sin(2t) + (1/5)(e^t)cos(2t)
      Integral of cos(2ln(x)) dx =
      Substitution:
      t = ln(x) ==> e^t = x
      dt = 1/x dx = 1/e^t dx ==> (e^t)dt = dx
      = Integral of cos(2t) (e^t)dt
      = Integral of (e^t)cos(2t) =
      = (2/5)(e^t)sin(2t) + (1/5)(e^t)cos(2t) =
      = (1/5)(e^t)[ 2sin(2t) + cos(2t) ] =
      = (1/5)*x*[ 2sin(2ln(x)) + cos(2ln(x)) ] =
      = (x/5)*[ 2sin(2ln(x)) + cos(2ln(x)) ] + C
      ;-D

  • @TiagoNogueirachannel
    @TiagoNogueirachannel 11 หลายเดือนก่อน +1

    hello , i just didnt understand the last part

    • @IntegralsForYou
      @IntegralsForYou  11 หลายเดือนก่อน +2

      Hi! The last part consist of solving the next equation:
      Integral of cos(ln(x)) dx = x*cos(ln(x)) + x*sin(ln(x)) - Integral of cos(ln(x)) dx
      Let's say L = Integral of cos(ln(x)) dx and we have to find the value of L:
      L = x*cos(ln(x) + x*sin(ln(x)) - L
      L + L = x*cos(ln(x) + x*sin(ln(x))
      2L = x*cos(ln(x) + x*sin(ln(x))
      L = (1/2)*(x*cos(ln(x) + x*sin(ln(x))
      L = (x/2)*(cos(ln(x)) + sin(ln(x)))
      Integral of cos(ln(x)) dx = (x/2)*(cos(ln(x)) + sin(ln(x))) + C
      Hope it helped! 💪

    • @TiagoNogueirachannel
      @TiagoNogueirachannel 11 หลายเดือนก่อน +1

      @@IntegralsForYou I figured it out 😉 , thank you so much

    • @IntegralsForYou
      @IntegralsForYou  11 หลายเดือนก่อน

      @@TiagoNogueirachannel Good to know! 😊

  • @oumaimabanan6449
    @oumaimabanan6449 6 ปีที่แล้ว

    Thank you so much.

  • @canadianbro9327
    @canadianbro9327 5 ปีที่แล้ว

    thank you so much

  • @justnour5135
    @justnour5135 ปีที่แล้ว +2

    L

  • @jesusduenas1523
    @jesusduenas1523 8 ปีที่แล้ว

    thanks 🙌🙌

  • @Davidgon100
    @Davidgon100 7 ปีที่แล้ว

    How many languages do you know?

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว +2

      Hahaha Dave, that's not a question about the integral, isn't it? :-D Five, six if we consider mathematics as a language.... Thanks for your comment, you made my day :D

    • @Davidgon100
      @Davidgon100 7 ปีที่แล้ว

      Integrals ForYou thanks for replying, I saw your replies to other comments and got curious lol. great job on this integral btw.

  • @manjuagarwal937
    @manjuagarwal937 5 ปีที่แล้ว

    kitni cute choti si writing hai

  • @esmes.6690
    @esmes.6690 6 ปีที่แล้ว

    Thank you so much, you made my day! Hahaha

  • @dmitrygromov1414
    @dmitrygromov1414 7 ปีที่แล้ว

    последний шаг такой очевидный (когда получившийся оригинальный интеграл надо перенести в левую часть) а я сам так и не додумался. стыдно :( спасибо за решение!)

    • @IntegralsForYou
      @IntegralsForYou  7 ปีที่แล้ว +1

      Heheh last step is obvious when you already know it :-D when I fisrt learnt it I was also surprised... Thank you for your comment! :D

  • @unhxllowedbeatz
    @unhxllowedbeatz 7 ปีที่แล้ว

    ДАЙ БОГ ТЕБЕ ЗДОРОВЬЯ

  • @axelandres8418
    @axelandres8418 8 ปีที่แล้ว +1

    sound? :(

    • @IntegralsForYou
      @IntegralsForYou  8 ปีที่แล้ว +2

      Hi Axel! I don't think you need it! Here is what I was listening while doing this video th-cam.com/video/8iMMoGuUxks/w-d-xo.html , and it helped! Now seriously, maybe one day I will add the sound, but by the moment I don't think it is necessary. Thanks for asking and enjoy the music!

  • @jeanabadji8007
    @jeanabadji8007 6 ปีที่แล้ว

    You are very strong

  • @jordangoes2210
    @jordangoes2210 7 ปีที่แล้ว

    Amuzing!

  • @rishavthakur4329
    @rishavthakur4329 5 ปีที่แล้ว

    Don't u think u have to write it bugger

  • @Pr-ssc
    @Pr-ssc 6 ปีที่แล้ว

    Hi

  • @Zwain-f5b
    @Zwain-f5b 3 ปีที่แล้ว +1

    Wtf