Solving An Exponential with Lambert's W

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 83

  • @salvatorecharney8180
    @salvatorecharney8180 ปีที่แล้ว +9

    W(ln4)/ln4 can be rewritten very easily as 1/2. W(ln4) itself can be rewritten as W(ln[2^2]), then W(2ln2), then W([ln2]e^[ln2]), which just becomes ln2 because ln2 is the x in that function. Then when replacing W(ln4) with just ln2, you have ln2/ln4, or ln2/(2ln2), which is just 1/2. Idk if anyone else knew that but I’ll just say that anyways haha

  • @levskomorovsky1762
    @levskomorovsky1762 ปีที่แล้ว +27

    Such tasks are solved on the count of one or two!
    4^x =1/x
    (4^x)^1/x = (1/x)^1/x
    2^2 = (1/x)^1/x
    2= 1/x
    x=1/2

    • @MathOrient
      @MathOrient ปีที่แล้ว +1

      Amazing technique man :)

    • @schukark
      @schukark ปีที่แล้ว

      Cool observation, you didn't prove it's the only root though, f(2)=f(1/x) doesn't give 2=1/x in general (here it did ¯⁠\⁠_⁠(⁠ツ⁠)⁠_⁠/⁠¯)

    • @nasrullahhusnan2289
      @nasrullahhusnan2289 ปีที่แล้ว +1

      Awesome observation

    • @nasrullahhusnan2289
      @nasrullahhusnan2289 ปีที่แล้ว

      ​​​@@schukark: Using Lambert W function yields xln4e^(xln4)=ln4. As ln4>0 there is only one solution, i.e. x=W(ln4)/ln4. Using WolframAlpha program to find the x value gives x=½ the same answer that Lev Skomorovsky obtained in a simpler method.

    • @TheEternalVortex42
      @TheEternalVortex42 ปีที่แล้ว

      @@schukark But we know there is only one solution by the initial argument in the video.

  • @spelunkerd
    @spelunkerd ปีที่แล้ว +12

    It took me way longer than it should have to understand Lambert W, I kept stumbling on what x is. What finally saved me was to go back to the analogous situation of y=e^(x) and its relation to the inverse function of y=ln(x). The key for me was to remind myself that x in those two equations is not the same, it is simply the input to each function. So, to do the inverse W function, effectively you're saying, you give me y in y=xe^x, and the W function calculator will spit out x from that equation. Looking back, it's so obvious it is hardly worth mentioning, which may be why it is hard to teach.

    • @lukasjetu9776
      @lukasjetu9776 ปีที่แล้ว

      same, it took me along time to understand it, but once i did, i realized it was very easy very quickly

    • @Kaizite
      @Kaizite ปีที่แล้ว

      yes

  • @justabunga1
    @justabunga1 ปีที่แล้ว +4

    That method works if you use Lambert W function. There is another method since 4 is a power of 2. We can raise both sides by 1/x, which is (1/x)^(1/x)=2^2. Comparing the same base and the same exponent 1/x=2, so x=1/2.

  • @Paul-222
    @Paul-222 ปีที่แล้ว +2

    I’ll have to remember that Lambert function. You use it a lot and it’s helpful.

  • @popitripodi573
    @popitripodi573 ปีที่แล้ว +2

    I saw that 1/2 was a solution and by the fact that the one function is increasing and the other is decreasing that was the only solution!!! I am not familiar with the lambert’s W function and I 😍 ❤❤❤it

    • @moeberry8226
      @moeberry8226 ปีที่แล้ว +1

      You cannot use that method to determine if an equation has only 1 solution. That only works for continuous functions. 1/x is discontinuous at x=0, you would be wrong if the function 4^x was shifted downward then you would have two solutions. Since 1/x is decreasing in two different regions. You got bailed out since 4^x lies above the x axis and therefore doesn’t get into quadrant 3 where 1/x also lies besides quadrant 1.

    • @popitripodi573
      @popitripodi573 ปีที่แล้ว

      @@moeberry8226 I guess you are right!I got carried away by my enthusiasm about finding the solution

    • @moeberry8226
      @moeberry8226 ปีที่แล้ว +1

      @@popitripodi573 no problem but good comment anyways keep it up.

    • @popitripodi573
      @popitripodi573 ปีที่แล้ว

      @@moeberry8226 thank you

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Nice 😍

  • @vighnesh153
    @vighnesh153 ปีที่แล้ว +3

    I wish you explained how to find value of "W(x)".

  • @gdtargetvn2418
    @gdtargetvn2418 ปีที่แล้ว +4

    1/x is strictly decreasing and 4^x is strictly increasing
    y = 4^x lies entirely above y = 0 as 4^x > 0 so it has 1 intersect with the other branch of 1/x which is in the positive side
    By inspection, x = 1/2

  • @GillesF31
    @GillesF31 11 หลายเดือนก่อน

    Your video provided me with VERY useful clarifications on the W Lambert function: the key to control such a function is the logarithms and the properties on logarithms, mainly. Logarithms are a powerful mathematics tool! Thank you. 🙂

    • @SyberMath
      @SyberMath  11 หลายเดือนก่อน

      Glad it was helpful!

  • @JXS63J
    @JXS63J ปีที่แล้ว +2

    You never really showed how the W function gave the answer.

  • @henry_dschu
    @henry_dschu ปีที่แล้ว

    haha, like it. understand lambert W better and can try to apply it when I meet similar questions in the future.....wonderful

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Glad you enjoyed it!

  • @StevenTorrey
    @StevenTorrey 26 วันที่ผ่านมา

    If the Lambert W Function is an inverse function F^-1, then does the W( ln4) have to be entered into the calculator aa an inverse: ln1/4? It mystifies me what mathematical procedure is being used with W to come up with the answer. In this case the answer is obvious and obviously 1/2.

  • @snejpu2508
    @snejpu2508 ปีที่แล้ว +1

    I also used Lambert W function first and then realized this is actually 1/2. :-) hehe

  • @tylergordon4804
    @tylergordon4804 ปีที่แล้ว +2

    As W is a multi-valued function, there are complex solutions,
    For example:
    x= -0.86645...+3.20904...i

  • @lq01
    @lq01 ปีที่แล้ว

    1:59

  • @abdoshaat3304
    @abdoshaat3304 ปีที่แล้ว

    Finally it comes

  • @limaroma1
    @limaroma1 ปีที่แล้ว

    Nice and brilliant

  • @InsaneMaths16-isuru
    @InsaneMaths16-isuru ปีที่แล้ว

    What is the board application that you are writing on ,.,....?
    Please Reply sir 🐱

  • @renesperb
    @renesperb 10 หลายเดือนก่อน

    The solution of the equation a^x = b/x can easily be found to be x = 1/ln a * W[b* ln a] .

  • @MathOrient
    @MathOrient ปีที่แล้ว

    Fantastic. I also didn't know about Lambert's W 😄

  • @jim2376
    @jim2376 ปีที่แล้ว

    Based on inspection alone x = 1/2 works. I suspect Lambert's may provide another solution.

  • @levskomorovsky1762
    @levskomorovsky1762 ปีที่แล้ว

    Another option:
    x ln 4 = ln(1/x)
    ln 4 = x^(-1) ln ( x^(-1))
    ln 4 = e^ln x^(-1) ln ( x^(-1))
    W (ln 4) = W [e^ln x^(-1) ln (x^(-1))
    W (ln 4) = - ln x
    x = e ^(-W(ln4))
    And this is according to the formula: e^nW(x) = [x/W(x)]^n, if n = -1.

  • @vernonitorosz
    @vernonitorosz ปีที่แล้ว

    We can solve this without using the LambertW function:
    4^x = 1/x, where "x" is not 0.
    (4^x)^(1/x) = (1/x)^(1/x)
    4^(x*1/x) = (1/x)^(1/x)
    4 = (1/x)^(1/x)
    let y = 1/x
    4 = y^y
    2^2 = y^y, that's y = 2
    1/x = 2
    x = 1/2
    check:
    4^1/2 = 1/(1/2)
    2 = 2.
    But I think that method and using LambertW is so useful and helpful.

  • @scottleung9587
    @scottleung9587 ปีที่แล้ว

    I guessed and checked (didn't have time to work it out)!

  • @renesperb
    @renesperb 10 หลายเดือนก่อน

    Here it is easy to guess the solution x= 1/2 , which is the only real solution. If you would choose 3 instead of 4 ,then you have to the Lambert function.

  • @hertselcorech9680
    @hertselcorech9680 ปีที่แล้ว

    Thank you, very nice! How do we solve: X squared equals to 2 raised to the X? When I graph these two equations I see three real solutions, but I don't know how to solve it. If you can help it is much appreciated!

    • @MichaelRothwell1
      @MichaelRothwell1 ปีที่แล้ว +2

      The equation x²=2ˣ has two obvious positive solutions, 2 and 4, and one not so obvious negative solution.
      We can solve the equation using Lambert's W function, using a technique similar to that in the video.
      x²=2ˣ
      ⇔x=±√(2ˣ)=±2^(x/2)=±(√2)ˣ
      ⇔x(√2)⁻ˣ=±1
      ⇔x(e^ln √2)⁻ˣ=±1
      ⇔xe^(-xln √2)=±1
      ⇔(-xln √2)e^(-xln√2)=ln√2 or -ln√2.
      ⇔-xln √2=W₀(ln √2) or W₀(-ln √2) or W₋₁(-ln 2)
      ⇔x=-W₀(ln √2)/ln √2 or -W₀(-ln √2)/ln √2 or -W₋₁(-ln √2)/ln √2
      The first solution is negative and the other two are positive.
      In fact ln ½ e^(ln ½)=½ln ½=-½ln 2=-ln √2,
      and ln ¼ e^(ln ¼)=¼ln ¼=-¼ln 4=-½ln 2=-ln √2,
      and ln ¼

  • @ramza2779
    @ramza2779 4 หลายเดือนก่อน

    W(ln4) = W(2 * ln2)= W (e^(ln2) * ln2) = ln2

  • @DGQQ78
    @DGQQ78 ปีที่แล้ว +1

    Lambert's function wasn't really needed after all

  • @lorenzbroll101
    @lorenzbroll101 ปีที่แล้ว

    What about 7^x +8^x= 325?

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      2

    • @payoo_2674
      @payoo_2674 9 หลายเดือนก่อน

      @@SyberMath x≈2.5223

  • @mbmillermo
    @mbmillermo ปีที่แล้ว

    I was a little surprised that you didn't go with your usual x^x. Don't you love that function anymore?! ;-)

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      I do but I wanted to use Lambert this time! x^x I still ❤️ you

  • @tamilselvanrascal5956
    @tamilselvanrascal5956 ปีที่แล้ว

    🎉🎉🎉

  • @Questiala124
    @Questiala124 ปีที่แล้ว

    My attempt before watching:
    Rewrite 4^x as e^xln(4)
    e^xln(4)=1/x
    multiply by xln(4) we get xln(4)*e^xln(4)=ln(4)
    Take lambert on bother sides
    Xln(4)=W(ln(4))
    X=W(ln(4))/ln(4)
    THis right?

  • @guidoreuter6032
    @guidoreuter6032 11 หลายเดือนก่อน +1

    A respectful suggestion: Less wordy

    • @SyberMath
      @SyberMath  11 หลายเดือนก่อน

      Thank you!

  • @prof.mohamad
    @prof.mohamad ปีที่แล้ว

    It is very easy my friend
    4^x =1/x
    Then 4= (1/x)^1/x
    Then 2^2 = (1/x)^1/x
    Then 2=1/x
    Then x =1/2

  • @weylguy
    @weylguy ปีที่แล้ว

    I truly detest Lambert's W formula. For one thing, as a scientist and engineer I never had to use it, and the other reason is that it looks like a mathematical form of cheating. How about x x^x instead?

  • @ChavoMysterio
    @ChavoMysterio 4 หลายเดือนก่อน

    4ⁿ=(1/n)
    4ⁿ=n^-1
    ln(4ⁿ)=ln(n^-1)
    n[ln(4)]=-1[ln(n)]
    -1[ln(4)]=(1/n)[ln(n)]
    -1[ln(4)]=[ln(n)][e^[ln(n^-1)]
    -1[ln(4)]=[ln(n)][e^[-ln(n)]]
    ln(4)=[-ln(n)][e^[-ln(n)]]
    -ln(n)=W[ln(4)]
    ln(n)=-W[ln(4)]
    n=e^-W[ln(4)]
    n=e^-W[ln(2²)]
    n=e^-W[2[ln(2)]] ❤

  • @ZipplyZane
    @ZipplyZane ปีที่แล้ว +2

    if W(ln 4)/(ln 4) becomes 1/2, that would suggest there is some sort of simplification with the rules of W(x) and how it relates to ln.
    W(ln 4) must equal ln(4)/2 for the answer to make sense.

    • @ZipplyZane
      @ZipplyZane ปีที่แล้ว

      @@TheEternalVortex42 Aha. Knew there had to be a way since it was such an exact answer.

  • @rakenzarnsworld2
    @rakenzarnsworld2 ปีที่แล้ว

    x = 1/2

  • @kianmath71
    @kianmath71 ปีที่แล้ว

    0.5

  • @vestelshirley8887
    @vestelshirley8887 ปีที่แล้ว

    Ln(4) not equal to one

  • @bobwineland9936
    @bobwineland9936 ปีที่แล้ว

    I can't see how W(ln4) =1 ?

    • @SyberMath
      @SyberMath  ปีที่แล้ว +1

      W(ln4) does not equal 1. It equals ln2 because
      W(ln4)=W(2ln2)=W(ln2*e^(ln2))=ln2

  • @franckplanks
    @franckplanks ปีที่แล้ว

    Awesome technique! Still, this was easy enough to solve mentally in less than a second.

  • @kaushikbasu9707
    @kaushikbasu9707 ปีที่แล้ว

    .5 ans

  • @jasmeet_singh2028
    @jasmeet_singh2028 ปีที่แล้ว

    And a 7th grader screwed his brain over doing this. Wow

  • @vestelshirley8887
    @vestelshirley8887 ปีที่แล้ว

    Ln4 is not equal to one.

  • @gbessinpenieleliezerhoumba3337
    @gbessinpenieleliezerhoumba3337 ปีที่แล้ว

    Hi dear Professor, I have a topic that might interest you and I would like to see a video about it:
    PROVE THAT FOR EVERY REAL NUMBER NOT having A MULTIPLE OF 2 CONTAINS IN ITS DECOMPOSITION AT LEAST ONE ODD NUMBER

  • @barakathaider6333
    @barakathaider6333 ปีที่แล้ว

    ،👍

  • @topquark22
    @topquark22 ปีที่แล้ว

    This is trivial (I didn't even watch the video). By visualizing the graphs of 4^x and 1/x, it's clear that x lies between 0 and 1. The graph of 4^x is increasing and 1/x is decreasing, so the intersection point is unique. By inspection, x = 1/2. We check this: 4^(1/2) = 2 and 1/(1/2) = 2.
    Now I'll watch the video and see all the goodies I missed about the Lambert W function.

  • @mathswan1607
    @mathswan1607 ปีที่แล้ว

    x=1/2