Surface Area for Implicit & Explicit Surfaces // Vector Calculus

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ธ.ค. 2024

ความคิดเห็น • 52

  • @vivekcome98
    @vivekcome98 3 ปีที่แล้ว +70

    Hey, I can see that your videos aren't getting much views compared to other youtubers. But the small set of audience you've earned here are probably crazy over your content. If I search for something and one of your videos make up into that list, I'm gonna go for that....no second thoughts

    • @DrTrefor
      @DrTrefor  3 ปีที่แล้ว +23

      hey, I appreciate that!

  • @Sloanpierce222
    @Sloanpierce222 3 ปีที่แล้ว +37

    I'm crushing this whole playlist in prep for my final and it is a life saver, thank you!

    • @DrTrefor
      @DrTrefor  3 ปีที่แล้ว +13

      good luck on the final!

  • @tomatrix7525
    @tomatrix7525 4 ปีที่แล้ว +11

    Very good. Love that ‘scaling factor’ explanation for the implicit version, very comprehendable for me!

  • @ycombinator765
    @ycombinator765 4 ปีที่แล้ว +9

    Half way through it and yet again a beautiful lecture delivered. Weldone sir!!!!

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว +4

      Many thanks!

  • @sukhmankhuttan9460
    @sukhmankhuttan9460 3 ปีที่แล้ว +3

    Your voice literally tells how committed you are to your work 😊👍🏻

  • @mikepenz
    @mikepenz 2 ปีที่แล้ว +2

    Grazie.

  • @jamesbond-th5bl
    @jamesbond-th5bl 2 ปีที่แล้ว +2

    Really beautiful explanation

  • @civilez7060
    @civilez7060 ปีที่แล้ว +3

    Doc, you're awesome. Your videos are 3blue1brown and organic chemistry tutor level.

  • @noahbarrow7979
    @noahbarrow7979 4 ปีที่แล้ว +6

    just another casually incredible video. Keep em comin!

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว +3

      Thanks! Will do!

  • @SHAHHUSSAIN
    @SHAHHUSSAIN 4 ปีที่แล้ว +7

    Very 9iC Respected Sir♥️

  • @NelsonMbigili-es6pw
    @NelsonMbigili-es6pw 7 หลายเดือนก่อน

    Great explanations
    Towards my finals and this is super duper helpful
    Thank you!!

  • @danielmrd1961
    @danielmrd1961 3 ปีที่แล้ว

    Respect ❤️ from India sir!!

  • @SI29222
    @SI29222 2 ปีที่แล้ว +2

    At 4:30 I don't understand how that flat surface can have ANY gradient. It's only defined in terms of x, y. The x and y components of the gradient are both 0. And the z-component doesn't even exist. Any help here is appreciated.

  • @j.o.5957
    @j.o.5957 3 ปีที่แล้ว +2

    So this can be applied when the corners and sides of the surface lines up with the corners and sides of one of the three planes (and no area where the denominator is 0). Pretty cool. Question to self, why is it exactly that formula? I remember you saying it's a stretching factor. nabla f is the gradient to the surface, meaning how much it's changing in that specific point. Call it rate of change. Then the denominator would be rate of change in the p_hat direction. Dot product of u * v = |u| * |v| * cos(theta), whereas theta is the angle between them. Meaning the resulting would be 1/(p_hat * cos(theta)). Unit would be area per p_hat in the direction of the gradient on the plane. So we're essentially left with the area times how much the normal of the plane changes in relation to our p_hat. The area could only grow in that case, considering it would be the least at cos(theta) = 1 (where theta = 0) and greatest as theta gets small (as theta -> pi/2), aka, horizontal to the plane, just as you said.

  • @eamon_concannon
    @eamon_concannon ปีที่แล้ว +1

    I like your videos a lot. The examples are great, but i'd like to see you give proofs for all the formulas that you use. For me and I guess for many more, the proofs are the most important thing.

  • @mrdayowl2
    @mrdayowl2 2 หลายเดือนก่อน +1

    Awesome ❤

  • @JIA1122
    @JIA1122 5 หลายเดือนก่อน

    Thank you for the video.
    Why is nabla F dot k equal to -1 ? at 7:24

  • @coolguy_krishna4540
    @coolguy_krishna4540 3 ปีที่แล้ว +1

    Sir it would be fantastic if u even discuss some problems too..tnqs for the video

  • @Reepicheep-mb9or
    @Reepicheep-mb9or 2 ปีที่แล้ว +1

    Do you have a reference for the derivation of the implicit formula?

  • @petelok9969
    @petelok9969 3 ปีที่แล้ว +1

    Trevor, if you have a surface that has minima won't that give regions where the gradient vector passes through zero? Does that mean this method can't be used in these instances? Peter

  • @404-j5s
    @404-j5s 2 ปีที่แล้ว +2

    Professor, shouldn't we have written dxdy instead of dA as we have already considered a double integral. We should have written dA if we had considered a single integral right? But thank you for a superb video anyways.

    • @DrTrefor
      @DrTrefor  2 ปีที่แล้ว +2

      Both dA and dxdy mean area, it is just in the latter we have made a choice of coordinates to integrate with respect to and in the former we haven’t yet

    • @404-j5s
      @404-j5s 2 ปีที่แล้ว +2

      @@DrTrefor Got it. Thanks prof!

  • @autishd
    @autishd 2 ปีที่แล้ว +2

    Why is the gradient vector normal to the curve?

    • @陳1013
      @陳1013 ปีที่แล้ว +1

      Go search the derivation of tangent plane formula, that will help you

  • @JuliusBrunner
    @JuliusBrunner 9 หลายเดือนก่อน +1

    Can simebody help me please? I don't understand why the Gradient is orthigonal to the surface we are describing. Isn't the Gradient a Vektor in the(in this case) x-y plane, pointing into the direktion with the biggest slope? If thats right, it would not be normal to our surface.
    I would be habby about explanations.

    • @howardlam6181
      @howardlam6181 6 หลายเดือนก่อน

      Because the surface here is defined by the function F(x,y,z) = 0 and we are taking the gradient of this F function. I don't really understand why he failed to define any function here. It really confuses people. Normally I define the z coordinate as function of x,y instead for these kinds of surfaces so if I take the gradient of this function it wouldn't make any sense.

  • @iternai3872
    @iternai3872 7 หลายเดือนก่อน

    Is a cylinder an implicit surface? the gradient of g(x,y,z) = x^2+y^2 has gradient where the gradient dotted with k is 0

  • @momen8839
    @momen8839 4 ปีที่แล้ว

    I have a question in the proof of Gauss law in all textbooks they prove it by integral of electric field of a charge on the area of spherical surface and the result will be of course, that integral [E.n.dA]=q/€ so why this result genarlized on all surface areas however they are sometimes not be spherical?

  • @NavyugJaiprakash141
    @NavyugJaiprakash141 10 หลายเดือนก่อน

    Thanks for such a good Material , love you sir

  • @wawangsf
    @wawangsf ปีที่แล้ว

    |∇F| is the area of the target surface while |∇F•k| is the area of the integration surface

  • @Festus2022
    @Festus2022 2 ปีที่แล้ว

    Is the normal vector in the XY plane a UNIT normal vector? Otherwise, why would gradient F dotted with the normal vector in the xy-plane = -1?

  • @shakennotstired8392
    @shakennotstired8392 4 ปีที่แล้ว +1

    great vidoe, thanks professor!

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว +1

      You are welcome!

  • @chandankar5032
    @chandankar5032 3 ปีที่แล้ว

    If the denominator a.k.a the squising factor is one ,then how on earth integrating gradient over the region R gives the surface ,can you give me some intuition ?

  • @nayeongkim3356
    @nayeongkim3356 3 ปีที่แล้ว

    Is this finding the surface area of the yellow surface or the white surface?

  • @Ranbir.Bhardwaj
    @Ranbir.Bhardwaj 3 ปีที่แล้ว +1

    Why subtitles in indonesian language?
    I don't understand eccent sometimes

  • @techno2371
    @techno2371 ปีที่แล้ว

    Thank you so much!

  • @andyralph9495
    @andyralph9495 4 ปีที่แล้ว +1

    Can p be just any unit vector?

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว +1

      Exactly. And that projects into the plane defined by that normal.

  • @j.o.5957
    @j.o.5957 3 ปีที่แล้ว +1

    Dr. Bazett, I really hope it's fine that I write these reflective comments. Let me know if they're not and I'll stop (y)

    • @DrTrefor
      @DrTrefor  3 ปีที่แล้ว +3

      I enjoy them, and hope others will too:)

    • @j.o.5957
      @j.o.5957 3 ปีที่แล้ว

      Love to hear that!

    • @robbiewilliamson9783
      @robbiewilliamson9783 ปีที่แล้ว

      @@j.o.5957 Yeah they're great.

  • @amanravan9795
    @amanravan9795 3 ปีที่แล้ว +1

    Woww