Regression and Ax = b: Over- and under-determined systems

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ธ.ค. 2024

ความคิดเห็น • 18

  • @HassanKhan-cs8ho
    @HassanKhan-cs8ho 4 ปีที่แล้ว +18

    I ABSOLUTELY LOVE THE WORK YOU AND STEVEN BRUNTON HAVE DONE!!!! YOU ARE LEGENDS!!!! LOVE YOU!

  • @ad2181
    @ad2181 3 ปีที่แล้ว +4

    He's setting a new standard for teaching Linear Algebra. He's GQ dress with the suite too.
    Enjoy the lectures they are Golden.

  • @tinkeringengr
    @tinkeringengr 4 ปีที่แล้ว +1

    This channel is great! keep up the great work, fundamentally changing civilization.

  • @djtovys
    @djtovys 4 ปีที่แล้ว +1

    First comment.
    I admired the Dr. Kutz. And this video is grateful.
    Thanks Dr. Kutz

  • @anilrao6
    @anilrao6 4 ปีที่แล้ว +1

    thank you Prof. Nathan Kutz

  • @gaelparfait4269
    @gaelparfait4269 4 ปีที่แล้ว +2

    Great stuff thanks a million professor Kutz. It is precise and concise, I can't imagine the number of souls you guys are saving out there

  • @dmitriiandreev8320
    @dmitriiandreev8320 4 ปีที่แล้ว +1

    The best quality education

  • @CTSSHAH
    @CTSSHAH ปีที่แล้ว

    thank you for a wonderful book and video series

  • @anilcelik16
    @anilcelik16 4 ปีที่แล้ว +1

    Thank you for the effort

  • @palzhanov
    @palzhanov 2 ปีที่แล้ว

    👍

  • @HD-qq3bn
    @HD-qq3bn 3 ปีที่แล้ว +1

    Respect you

  • @TheRsmits
    @TheRsmits 5 วันที่ผ่านมา

    Watching this again and realized the problem of over-fitting is analogous to the 'no true Scotsman' fallacy in philosophy where someone has given themselves so many parameters that they can fit any data.

  • @ОльгаКудрявцева-ы3р
    @ОльгаКудрявцева-ы3р 2 ปีที่แล้ว

    how do you do that?

  • @mohammadaminmousavi5011
    @mohammadaminmousavi5011 3 ปีที่แล้ว

    GREATTT!

  • @anothermlstudent1458
    @anothermlstudent1458 3 ปีที่แล้ว

    Thank you very much Nathan for the great video! When in 3:37 you say "you cannot satisfy Ax = b, is overdetermined", if I imagine the case where some rows may be duplicated in my data or for some reason some rows happen to be a linear combination of the others I may get a "tall" matrix (or and overdetermined system) that may have a solution/s. In short, following the same definition of overdetermined as in en.wikipedia.org/wiki/Overdetermined_system, you can have an overdetermined system with a solution. Do you use a different definition of under- overdetermined? (for instance, only taking into consideration the number of equations after reduction?) or you are just focusing on what you assume to be the most common case in a data matrix (to not present duplicated or dependent rows? Thank you for the clarification =)

    • @azoj777
      @azoj777 2 ปีที่แล้ว

      no, you are correct - in an overdetermined system you'll only have a solution if b is in the span of A, and since the column vectors of A belong to R^n and n is significantly greater than m, the col vectors of A only span some subspace of R^n (a small subspace given that n is significantly greater than m). b is also a vector in R^n but it's likely that b is not in the subspace that A spans, so it's likely we don't have a solution.

  • @VIVEKPANDEYIITB
    @VIVEKPANDEYIITB 3 ปีที่แล้ว

    How does solver determine which variables are useful in case of l1 norm? Also, how do we prove theoretically that l1 promotes sparsity? Anyone?

  • @ErnestoMendoza-oo1fq
    @ErnestoMendoza-oo1fq ปีที่แล้ว

    The MathLab and Python solutions for the undetermined case, panel (D) do not match.