CS885 Lecture 8b: Bayesian and Contextual Bandits

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ธ.ค. 2024

ความคิดเห็น • 10

  • @shivangitomar5557
    @shivangitomar5557 ปีที่แล้ว +2

    Beautiful! Thank you so much!!

  • @zhouyun
    @zhouyun 5 ปีที่แล้ว +4

    the math is very clearly explained, really good one.

  • @pemfiri
    @pemfiri 4 ปีที่แล้ว +4

    the contextual bandit is a simple concept, but i get confused with the mathematical abstraction and subscripts etc,, at points the indexes gets tangled up and are inconsistent, in both Bernoulli and linear models you could just use 1 toy example like the coin example to completely illustrate how the algorithm works end to end.

  • @yakocal
    @yakocal ปีที่แล้ว

    Thank you so much, explained very well

  • @whyareugae5528
    @whyareugae5528 2 ปีที่แล้ว

    Thank you professor great lecture

  • @statisticaltheoryandanalys8270
    @statisticaltheoryandanalys8270 4 ปีที่แล้ว

    great professor

  • @giorgosnikola6990
    @giorgosnikola6990 2 ปีที่แล้ว

    I think there is an error in the posterior predictive distribution in 59:52. First, I suppose that is the posterior predictive of the mean reward instead of the reward because an additional σ^2 is missing from the Covariance of the posterior predictive. But my main concern is on the mean of the posterior predictive distribution. I think it should be x * μ instead of σ^2 * x * μ. Any insights?

  • @shairuno
    @shairuno 4 ปีที่แล้ว

    he is really good.

  • @yanxu4968
    @yanxu4968 3 ปีที่แล้ว

    how to do contextual exploration in case of neural network approximation?