What primes satisfy this equation?

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ม.ค. 2025

ความคิดเห็น • 94

  • @littlefermat
    @littlefermat 3 ปีที่แล้ว +46

    This problem is really cool since it uses many tricks (mod - inequalities - ...)
    For the inequality part at the end I like doing it this way:
    q|p-2 , p-1|q-1 thus q(p-1)|(q-1)(p-2), but clearly q(p-1) is greater than (q-1)(p-2) Hence p=2
    And so we are done!

    • @leif1075
      @leif1075 3 ปีที่แล้ว

      If you Dont know thise tricks , it is possible to solve by plugging and tryingdiff valuesn orb replcing p abd q abd r by 2m plus 1 since all primes are odd except 2....so why not do it this way?

    • @leif1075
      @leif1075 3 ปีที่แล้ว

      @Rick Does Math why not it's more intuitive and as logical

  • @macnolds4145
    @macnolds4145 3 ปีที่แล้ว +27

    Hey, Michael. A request: can we do some topology (maybe some key point-set concepts or an intro to algebraic topology)? You do have a gift for explaining this stuff.

  • @MathElite
    @MathElite 3 ปีที่แล้ว +33

    Wow that is definitely an interesting problem

  • @r.maelstrom4810
    @r.maelstrom4810 3 ปีที่แล้ว +3

    At 7:30 the argument for Ord_(p-1) q = 1 doesn't hold. For example, if q=5 and p=11, as p-1=10, then p-1 and q are not relatively prime and you cannot apply Euler theorem. In fact this same invalidation holds for your argument in 5:09: p and q are relatively prime but not necessarily this holds for q and p-1.
    All of this only holds if p < q, which you can maintain by simmetry of the terms in the equation proposed as problem.

    • @agamanbanerjee9048
      @agamanbanerjee9048 3 ปีที่แล้ว

      Yeah he was a bit sloppy there at 7:30 but I think there was no mistake at that 5:09 part, he just reduced mod p-1, and p^q is 1 mod (p-1) clearly

    • @sahiltamang2352
      @sahiltamang2352 2 ปีที่แล้ว +1

      Sahil says, p-1 and q is a relatively prime means that we can apply the order integer. Otherwise, if it's not a relatively prime then this most definitely doesn't hold.

    • @sahiltamang2352
      @sahiltamang2352 2 ปีที่แล้ว +1

      The order of an integer modulo n says that the a^m is congruent to 1 (mod n) where the gcd(a,n)=1. Thank you R. Maelstorm!

  • @goodplacetostop2973
    @goodplacetostop2973 3 ปีที่แล้ว +16

    Good thing I have some backup homeworks 😂
    HOMEWORK : Suppose we write x² as the sum of x x's, and then take the derivative:
    Let f(x) = x + x + ... + x (x times)
    Then f'(x) = d/dx[x + x + ... + x] (x times) = d/dx[x] + d/dx[x] + ... + d/dx[x] (x times) = 1 + 1 + ... + 1 (x times) = x. We proved that the derivative of x², with respect to x, is actually x. Where is the misteak?
    SOURCE : Nick's Mathematical Puzzles and Doug Shaw’s blog.

    • @pardeepgarg2640
      @pardeepgarg2640 3 ปีที่แล้ว +8

      That *misteak*

    • @goodplacetostop2973
      @goodplacetostop2973 3 ปีที่แล้ว +4

      @@pardeepgarg2640 Yummy indeed

    • @AlexandreRibeiroXRV7
      @AlexandreRibeiroXRV7 3 ปีที่แล้ว +6

      It's due to not also taking the derivative at the "x times"; this is pretty much a mistake of not applying the chain rule correctly.

    • @shikharmukherji1236
      @shikharmukherji1236 3 ปีที่แล้ว +7

      the definition of f doesn't make sense when x is not a natural number

    • @noahtaul
      @noahtaul 3 ปีที่แล้ว +2

      You forgot to differentiate the x in (x times). Should use the chain rule to get
      f'(x) = d/dx[x + x + ... + x] (x times) + [x + x + … + x] (d/dx x times) = d/dx[x] + d/dx[x] + ... + d/dx[x] (x times) + [x + … + x] (1 time) = 1 + 1 + ... + 1 (x times) + x = x + x = 2x

  • @malignusvonbottershnike563
    @malignusvonbottershnike563 3 ปีที่แล้ว +35

    Missing bracket at 5:43. This is the only time I'll ever be smart enough to spot a mistake in one of Michael's videos lol. Anyway, he fixed it at 7:55, so my excitement was short lived.

  • @helo3827
    @helo3827 3 ปีที่แล้ว +11

    for the last part induction is also very easy.

    • @Mathcambo
      @Mathcambo 3 ปีที่แล้ว

      Hello everyone. My channel offers a lot of videos such as: limits, integrals, more difficult exercises. Please join all the students to learn. Thank you!

    • @picklesauce7983
      @picklesauce7983 3 ปีที่แล้ว +3

      I agree. Avoid using calculus in math contests. Markers hate it. You will get spanked

  • @crazyAngol
    @crazyAngol 3 ปีที่แล้ว +4

    When he argued that p = r the first thing I did was used exactly the same arguments with mod q. The result was a far simpler proof that r=2

  • @wesleydeng71
    @wesleydeng71 3 ปีที่แล้ว +1

    To show no solutions to the final equation if q>5 without calculus. Notice that (q+1)^2+(q+1)+2 = (q^2+q+2) + 2q+2 < 2*(q^2+q+2), if q>1. So when q increases by 1, LHS doubles but RHS is less than doubled.

  • @wojteksocha2002
    @wojteksocha2002 3 ปีที่แล้ว +11

    Ok, that's a typical Fermat's Little Therom and congruences problem, cool

  • @hydra147147
    @hydra147147 3 ปีที่แล้ว

    We can also argue that p^q - q^p > 0 so p^q > q^p which happens only for p < q (modulo edge cases) but since p = 2 (mod q) we must have p = 2.

  • @riadsouissi
    @riadsouissi 3 ปีที่แล้ว

    Another way to show that p=2 mod(q) implies p=2 is to assume p=2+kp with k>=1 then show that p^q-q^p is always negative which is impossible since (r-1)(p+q) is positive.
    So we want p^q-q^p > 0 with p=qk+2>=q+2, which is equivalent to showing qlog(p) > plog(q). If we consider f(x) =log(x) / x. We can show for x>=3, if y>x and y>=4 then f(y) < f(x).
    But for q>=3, p=q+2>=5, this means p^q-q^p cannot be positive.
    For q=2, the equation we get is 2^p=2-p which gives no solution.

  • @hsjkdsgd
    @hsjkdsgd 3 ปีที่แล้ว

    This is such a beautiful problem! Thanks Michael

  • @Icenri
    @Icenri 3 ปีที่แล้ว +3

    7:21 Michael became a car for a second there

    • @tonyennis1787
      @tonyennis1787 3 ปีที่แล้ว +1

      What do you mean?

    • @Icenri
      @Icenri 3 ปีที่แล้ว

      @@tonyennis1787 His vibratto sounded like a car horn there

  • @camrouxbg
    @camrouxbg 3 ปีที่แล้ว

    That is a pretty little problem! Thanks Michael.

  • @tomatrix7525
    @tomatrix7525 3 ปีที่แล้ว

    The ending explanation is sketched as followed. Diffrentiating 2^x gives 2^x . ln2.
    Thus diffrentiating the whole function three times removes all the polynomial terms leaving dy/dx(2^x)’’’ which gives 2^x . (ln2)^3 As Michael suggetsed, we use the fact that ln2 > 1/2, since sq rt. of e is is clearly less than 2 b/c 2^2 = 4 > e. We can see that 2^x . (ln2)^3 > 2^x . (1/2)^3 = 2^{x-3) > 0 for all x >=6.

    • @reeeeeplease1178
      @reeeeeplease1178 2 ปีที่แล้ว

      Dont we only need ln2 > 0 since 2^x > 0 for all x?

  • @jimskea224
    @jimskea224 3 ปีที่แล้ว +1

    You only need to check f(x)>0 for x >= 7 since x=q is prime

  • @UberHummus
    @UberHummus 3 ปีที่แล้ว

    Def an awesome problem. Interesting use of calculus at the end, I just used IVT and single derivative of each: the polynomial and the exponential. Once one is greater and its derivative is larger as well, there will be no more crossings

    • @axemenace6637
      @axemenace6637 3 ปีที่แล้ว

      Where does IVT apply

    • @UberHummus
      @UberHummus 3 ปีที่แล้ว

      Make a new function which is the exponential minus the polynomial. IVT, combined with using the derivative, will help you determine that there are no more zeroes

  • @michaelmoore7568
    @michaelmoore7568 ปีที่แล้ว

    What is/are the relationships between this and Weyl inequalities?

  • @khaido07
    @khaido07 2 ปีที่แล้ว

    An inductive proof for the last part:
    For q=7, LHS is larger than RHS
    Suppose this is true for q=k (k>=7)
    For q=k+1, we have LHS = 2x2^k > 2 (k^2 + k + 2) = (k^2 + 2k + 1) + k^2 + 3 > (k+1)^2 + k + 3 = RHS

  • @hoanglaikhanh1383
    @hoanglaikhanh1383 3 ปีที่แล้ว +2

    Problem like this : (USA TST 2003)
    Find all prime p,q,r such that:
    +) q^r +1 is divisibled by p
    +) r^p + 1 is divisibled by q
    +) p^q +1 is divisibled by r
    By the way , the problem in video use many tricks, kind of number theory problem i like. Good job michael

  • @bluepen2637
    @bluepen2637 3 ปีที่แล้ว

    Viewer suggestion problem.
    [All-Russian Mathematical Olympiad 2021]
    Natural numbers n > 20 and k > 1 are such that n is divisible by k^2. Prove, that there are natural numbers a, b, c such that:
    n = ab + bc + ac

  • @goodplacetostart9099
    @goodplacetostart9099 3 ปีที่แล้ว

    Good Place To Start At 0:01

  • @cicik57
    @cicik57 3 ปีที่แล้ว

    so why order n/m is less or equal than n?

  • @demenion3521
    @demenion3521 3 ปีที่แล้ว +1

    why do you even multiply the congruency q=(1-r)q by the inverse of q instead of just subtracting q which doesn't require q!=p

    • @DylanNelsonSA
      @DylanNelsonSA 3 ปีที่แล้ว +1

      You could. You end up with qr ≡ 0 (mod p). But then you'd still want to break the problem up into the two cases p = q and p = r, so you don't really avoid checking if p = q.

  • @petersievert6830
    @petersievert6830 3 ปีที่แล้ว +1

    Wouldn't one get away at a contest by stating that "if 2^7>7²+7+2 then obviously 2^q is bigger for all higher values of q" ?
    I guess, induction over n=q would be rather easy as well, if one doesn't like the calculus.

    • @MrNygiz
      @MrNygiz 3 ปีที่แล้ว +2

      Assume
      2^n>n^2 + n + 2
      Now then
      2^(n+1)=2*2^n>2(n^2+n + 2)=n^2+ (n^2+2n +1) + 3=(n+1)^2 + (n^2+1) +2>=(n+1)^2 +n+1 + 2
      So if the inequality is ever satisfied it is, by this induction step, always satisfied afterwords

  • @swift3564
    @swift3564 3 ปีที่แล้ว

    This problem was fun to work on. I personally tackled this during the contest and got 1 pt lol

  • @ernestau
    @ernestau 3 ปีที่แล้ว +2

    Why isn't first derivative enough?

    • @stewartcopeland4950
      @stewartcopeland4950 3 ปีที่แล้ว

      because you have not yet eliminated all the terms of the polynomial, which are negative

  • @Mathcambo
    @Mathcambo 3 ปีที่แล้ว

    Good solution

  • @tgx3529
    @tgx3529 3 ปีที่แล้ว

    Note to f(x) . 2^x -1.75=(x+0,5)^2. Yes there is only 1 solution. But Michael, have you the Proof, that only this 3 numbers are solution of this problem?

  • @tahirimathscienceonlinetea4273
    @tahirimathscienceonlinetea4273 3 ปีที่แล้ว

    It's very smart proof man 👍

  • @aahaanchawla5393
    @aahaanchawla5393 3 ปีที่แล้ว

    11:43 polyal?

    • @dariensisko0
      @dariensisko0 3 ปีที่แล้ว

      poly[nomi]al -> poly'al

    • @swaree
      @swaree 3 ปีที่แล้ว

      _poly'al,_ abbreviation of _polynomial,_ see _o'er_ for _over_

    • @aahaanchawla5393
      @aahaanchawla5393 3 ปีที่แล้ว

      @@swaree Thanks I got it now

    • @z01t4n
      @z01t4n 2 ปีที่แล้ว

      @@swaree except o'er is an archaic, literary form, not an abbreviation (it uses the same # of chars as the original).

  • @mertkoksal9316
    @mertkoksal9316 3 ปีที่แล้ว

    I tried to solved, could you anyone give me a feedback (cuz it is so shorter than the video) : p^q - pr + p = q^p + qr - q => p(p^(q-1) - r + 1) = q^p + qr - q => p | (q^p + qr - q) from Fermat a^p is equavelant to a mod p so q^p - q = 0 (mod p), hence q^p - q = 0 (mod p) p | qr. It is clear that p cannot be equal to q, then p = r. Also on the other hand q | (p^q - pr + p) = (p^q - p^2 + p) = (from fermat) (2p - p^2) then here comes 2p is congruent to p^2 => 2 is congruent to p (mod q). So p = 2, or p = q + 2, if p = 2, it is so short to find p = r = 2, q = 5. Otherwise if p > 3 it is clear that p^(p-2)

  • @romajimamulo
    @romajimamulo 3 ปีที่แล้ว

    Wait, why can we use the little theorem mod a different prime than that power?

    • @DylanNelsonSA
      @DylanNelsonSA 3 ปีที่แล้ว +1

      What do you mean? He uses that q^p ≡ q (mod p) and p^q ≡ p (mod q).

    • @romajimamulo
      @romajimamulo 3 ปีที่แล้ว

      @@DylanNelsonSA that must be a different theorem.
      As FLT is a^p = a (mod p)

    • @DylanNelsonSA
      @DylanNelsonSA 3 ปีที่แล้ว +1

      @@romajimamulo What do you get if you take a = q?

    • @romajimamulo
      @romajimamulo 3 ปีที่แล้ว

      @@DylanNelsonSA but he's not working mod... Oh he is working mod p

  • @adrianmisak07
    @adrianmisak07 3 ปีที่แล้ว

    EXCELLENT thumbnail

  • @Notcr7.R
    @Notcr7.R 3 ปีที่แล้ว +2

    Hello l am from Azerbaijan🇦🇿🇹🇷👍 intresting study

  • @tautvydas2786
    @tautvydas2786 3 ปีที่แล้ว

    JBalkanMO?

  • @CM63_France
    @CM63_France 3 ปีที่แล้ว

    Hi,
    For fun:
    1 "and so on and so forth".

  • @fhffhff
    @fhffhff 3 ปีที่แล้ว

    А не сошел ли с ума автор задачи!?

  • @warren1564
    @warren1564 3 ปีที่แล้ว +1

    I love math...
    I also have no idea what is going on...yet it's intriguing 🤔

  • @playgroundgames3667
    @playgroundgames3667 3 ปีที่แล้ว

    Zero is positive. Not related to the question

    • @axemenace6637
      @axemenace6637 3 ปีที่แล้ว

      Zero is not positive lmao

  • @pardeepgarg2640
    @pardeepgarg2640 3 ปีที่แล้ว

    **HI**

  • @Mathcambo
    @Mathcambo 3 ปีที่แล้ว

    Why study mathematics?

    • @maxwellsequation4887
      @maxwellsequation4887 3 ปีที่แล้ว +4

      Because it's the ultimate truth and ultimate beauty.

    • @Mathcambo
      @Mathcambo 3 ปีที่แล้ว

      @@maxwellsequation4887 mathematics is queen 👑 science

    • @tonyennis1787
      @tonyennis1787 3 ปีที่แล้ว

      because it is good for your brain.

    • @bobh6728
      @bobh6728 3 ปีที่แล้ว

      Things discovered in “pure” mathematics end up being used in the real world in areas such as computer science, quantum mechanics, etc.

    • @axemenace6637
      @axemenace6637 3 ปีที่แล้ว

      @@bobh6728 Not always. According to your argument, why study something which is less likely to have application than something such as, say, engineering?