Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น • 14

  • @mathstrek
    @mathstrek 9 หลายเดือนก่อน +1

    It's interesting that the host's mathematical training leaps into view several times in this video. E.g. he's never heard of Coxeter groups before, but when told of the definition he immediately thought of reflections (which is exactly the right intuition: reflection groups are finite Coxeter groups).

  • @gijsb4708
    @gijsb4708 ปีที่แล้ว +2

    Also, I see no mention of Ford circles, a lovely related circle packing!

    • @santerisatama5409
      @santerisatama5409 ปีที่แล้ว

      Ford circles are very deep as they form a Stern-Brocot type structure. Also Epic circles, as discussed in Numberphil.

  • @frankshifreen
    @frankshifreen ปีที่แล้ว

    Loved the “Langlands Program” video on Quanta Magazines educational outreach

    • @frankshifreen
      @frankshifreen ปีที่แล้ว

      I believe Alex was the narrator and writer

  • @gijsb4708
    @gijsb4708 ปีที่แล้ว +1

    Really enjoyed this episode :)

  • @SorryBeeinLate
    @SorryBeeinLate ปีที่แล้ว

    What would be some further reading suggestions on circle packings and that particular conjecture for a math enthusiast but not a mathematician?

    • @TimothyNguyen
      @TimothyNguyen  ปีที่แล้ว +1

      Hmm, sorry don't know off the top of my head since it's not my area of mathematics. Try looking through the bibliography of Wikipedia articles would be my suggestion.

    • @SorryBeeinLate
      @SorryBeeinLate ปีที่แล้ว

      @@TimothyNguyen thanks! I'll also try asking chatgpt 😅

  • @markphc99
    @markphc99 ปีที่แล้ว

    What an amazing guy

  • @oncedidactic
    @oncedidactic ปีที่แล้ว +3

    I absolutely adore sphere packing, both as a basic curiosity and because it's a surprisingly deep and connected subject! So glad to see this video!! Thanks!!
    Is "circle" vs "sphere" preferred term? Ah I see how it works out.
    Huge thank you to Alex for an extraordinary talk!

    • @TimothyNguyen
      @TimothyNguyen  ปีที่แล้ว +1

      We mostly talked about circle packings (2d case). We talk about sphere packings (3d) a bit towards the end. I think "sphere packing" suggests dimension 3 and above, so for the sake of accuracy, it made more sense to title the episode in terms of circle packings. Hopefully sphere packings in greater depth and from other perspectives will be a future topic!

  • @JoseGonzalezUwU
    @JoseGonzalezUwU ปีที่แล้ว

    interesante :)

  • @Entertainment-jv8xw
    @Entertainment-jv8xw ปีที่แล้ว +1

    Love you timothy