The Hardest Putnam Integral Ever….

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 พ.ย. 2024

ความคิดเห็น • 28

  • @leonthethird7494
    @leonthethird7494 หลายเดือนก่อน +2

    how is this the moment where I learn how chappell roans name is actually pronouced

  • @Jagoalexander
    @Jagoalexander  หลายเดือนก่อน +12

    Mistake spotted: 7:09 the factorisation of u⁴ - u², should become u²(u+1)(u-1) instead of what we see. The solution to this integral is exactly what we have already but with the negative sign swapped between the 2 ln terms :)

  • @RayMyName
    @RayMyName หลายเดือนก่อน +9

    i think trig sub starting with x²=tan(θ) is way easier

  • @AscendantPerfection
    @AscendantPerfection หลายเดือนก่อน +7

    I'm a little bit confused with the part where it was u³/x.
    Isn't that supposed to be 1/xu³ that is u^-3/x instead??

    • @Jagoalexander
      @Jagoalexander  หลายเดือนก่อน +5

      You're absolutely right. I've just realised the mistake thank you.
      Okay so, correcting the mistake, in the denominator we would need to times by u^2. This leads to an integral which is identical to what we have, but with a negative on the front. Leading to the final answer being the same as what we got, however the ln(u+1) term is positive, and the ln(u-1) term is negative, with the arctan being the same
      Thanks for pointing it out, in my original solution I didn't make this mistake but in the video I did ...

    • @AscendantPerfection
      @AscendantPerfection หลายเดือนก่อน

      ​@@Jagoalexander Understood. And if the u-substitution results in u²/(1-u⁴), perhaps the natural logarithms will also be in the form of ln|1-u| or ln|1+u|??
      Which would make the ln|1-u| term be positive and ln|1+u| be negative. Or maybe I didn't compute it right from up top. If you don't mind, please do let me know my mistake.
      Either way, yours is a beautiful technique. Loved the clever substitution. You're a godsend brother ❤️❤️❤️ Glad to have subscribed here.

  • @Jagoalexander
    @Jagoalexander  หลายเดือนก่อน +4

    Thank you for watching the video! If you’re not already, please subscribe. Also RIP Euler, you would have loved Chappell Roan 😔

  • @MrRichie444
    @MrRichie444 หลายเดือนก่อน

    This is just a simple integral. Considering int of x^n ≈ (1/n+1)*x^(n+1), we can write the displayed equation as int of (x^4 + 1)^(-1/4), note -(1/4) + (1/1) = (-1 + 4)/ 4 = 3/4 and x^4 ≈ (1/5)*x^5, hence giving us (3/4)*(1/5)*x^5*(x^4+1)^(-1/4) ≈ || (3/20)*x^5*(x^4+1)^(-1/4) : voila, my answer may differ from your answer, we call it relativity.

    • @MrRichie444
      @MrRichie444 หลายเดือนก่อน

      This is how I see this equation, let us consider the whole integral of (x^4+1)^(-1/4) as our starting static universe and the integral of (x^4+1) as a small change or perturbation in our universe, so after rigorous derivation, observation and analysis, we came to the conclusion that, we have keep our starting equation, which represents the universe as constant and then multiply it with the equation, which represents the small changes in the universe. The equation can then considered as the effect that a changing variable has on a static universe, therefore making it a dynamic change.

    • @MrRichie444
      @MrRichie444 23 วันที่ผ่านมา

      Using x^n ≈ (1/n+1)*x^(n+1) || x^4 ≈ (1/5)*x^5 , 1 ≈ x , -(1/4) + 1 ≈ 3/4 || therefore our previous answer becomes (4/3)*((1/5)*x^5 + x)*(x^4 + 1)^(3/4) . This is an indication that our universe is expanding.

  • @jlp8573
    @jlp8573 หลายเดือนก่อน

    another solution with x² = sh(t), then u = sqrt(tanh(t)). this leads directly to (1/2)(Atanh(u) + Atan(u)) which is quite fun...

    • @alanbromborsky8857
      @alanbromborsky8857 หลายเดือนก่อน

      I assume you mean x**2 = sinh(t). That is what I did too. Note you need to note that sqrt(x**2) = Abs(x).
      I(x) = (1/2)*atanh(Abs(x)/(x**4+1)**(1/4))+(1/2)*atan(Abs(x)/(x**4+1)**(1/4))
      If I use sympy to differentiate I(x) I get
      dI/dx = x/((x**4 + 1)**(1/4)*Abs(x))

  • @elkincampos3804
    @elkincampos3804 หลายเดือนก่อน

    1/(u^4-u^2)= A/(u^2-1)+B/u^2 ( Subtitute u^2=v). Now A/(u^2-1) is easy A=a*(u-1)+b*(u+1) and u-1=0 and a+1=0 give a and b, you can use L'hopital's rule, L'hopital's has a algebraic proof.

  • @alanbromborsky8857
    @alanbromborsky8857 หลายเดือนก่อน

    If I plug your answer into sympy differentiate and simplify I get a mess. If I plug the following answer into sympy -
    I(x) = (1/2)*atanh(Abs(x)/(x**4+1)**(1/4))+(1/2)*atan(Abs(x)/(x**4+1)**(1/4))
    I get -
    dI/dx = x/((x**4 + 1)**(1/4)*Abs(x))
    did you check your answer by differentiating?
    I started with the substitution x**2 = sinh(y) and then used sinh(y)**2+1 = cosh(y)**2. Then used z = sqrt(tanh(y)). Then used partial fraction decomposition -
    1/(1-z**4) = (1/2)*(1/(1-z**2)+1/(1+z**2)).

    • @元兒醬
      @元兒醬 หลายเดือนก่อน

      I've got the same result

  • @giuseppepapari7419
    @giuseppepapari7419 หลายเดือนก่อน

    5:33 What you set to be u^3/x should be 1/(xu^3). In fact, in your definition the radical stays at the numerator, while in the fraction you are considering, it stays at the denominator. Or maybe are we missing some minus sign?

  • @shreebhattacharjee3502
    @shreebhattacharjee3502 หลายเดือนก่อน +1

    AMAZING!!!!

  • @BilmeMortaylı
    @BilmeMortaylı 26 วันที่ผ่านมา

    Could you solve the integral of e^-x^3 zero to infinity?

  • @shreebhattacharjee3502
    @shreebhattacharjee3502 หลายเดือนก่อน +1

    this is great!!!

  • @chrisrybak4961
    @chrisrybak4961 หลายเดือนก่อน

    Did he somehow correct the error at 6:51 ?
    I.e. that (u^4-u^2) actually equals (u^2+u)(u^2-u) and not what was in the video.
    If that has not been corrected, surely the final answer is wrong?

  • @asherasher9249
    @asherasher9249 หลายเดือนก่อน +4

    7:09 Is it just me or does u^4-u^2 not factor into (u^2+1)(u^2-1)

    • @sambhavsaraswat5585
      @sambhavsaraswat5585 หลายเดือนก่อน +1

      No, as stated by OP, the factorisation is u^2(u+1)(u-1)

    • @PanozGTR2
      @PanozGTR2 หลายเดือนก่อน

      No, that would be u^4 - 1

  • @jackkalver4644
    @jackkalver4644 หลายเดือนก่อน

    And here I was thinking the answer was non-elementary!

  • @VibratorDefibrilator
    @VibratorDefibrilator หลายเดือนก่อน

    This is a little bit below ln x, an evaluation before starting anything meaningful towards finding solution.

    • @Jagoalexander
      @Jagoalexander  หลายเดือนก่อน

      What do you mean sorry?

    • @VibratorDefibrilator
      @VibratorDefibrilator หลายเดือนก่อน

      @@Jagoalexander I meaan that the initial function os approximately 1/x when x->infinity, consequently, the integral of 1/x is ln x.

  • @mattnorberto639
    @mattnorberto639 หลายเดือนก่อน

    6:59??