An Alternating Infinite Radical

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ม.ค. 2025

ความคิดเห็น • 65

  • @SyberMath
    @SyberMath  2 ปีที่แล้ว +2

    Hello everyone, here is some of the links I was talking about:
    math.stackexchange.com/questions/2191147/a-infinite-and-alternating-square-root-of-2
    math.stackexchange.com/questions/4049946/the-infinitely-nested-radicals-problem-and-ramanujans-wondrous-formula
    www.dgp.toronto.edu/~mjmcguff/math/nestedRadicals.pdf

  • @AlexandreRibeiroXRV7
    @AlexandreRibeiroXRV7 2 ปีที่แล้ว +27

    Alright, my time to shine and present a solution that doesn't involve quartics!
    We're going to define two numbers, namely:
    a = sqrt(2 + sqrt(2 - sqrt(2 + sqrt(2 - ...))))
    b = sqrt(2 - sqrt(2 + sqrt(2 - sqrt(2 + ...))))
    It's easy to see that a = sqrt(2 + b) and b = sqrt(2 - a). Square both equations to get a^2 = 2 + b and b^2 = 2 - a, then subtract both to get a^2 - b^2 = a + b
    Setting everything on the left side gets us to a^2 - bˆ2 - (a + b) = 0, which can be simplified to (a + b)(a - b) - (a + b) = 0 and then (a + b)(a - b - 1) = 0
    We now have two cases, the first of which being a + b = 0. Both a and b are defined as square roots, which implies that they cannot be negative numbers, thus the only way they could sum to 0 is if both are 0; however, this breaks the equations a = sqrt(2 + b) and b = sqrt(2 - a).
    The other case takes us to a - b - 1 = 0, which gives us b = a - 1, and therefore aˆ2 = 2 + (a - 1) which leads us to a^2 - a - 1 = 0, whose only positive root is a = phi, which is indeed the correct answer.

    • @nipunnohria186
      @nipunnohria186 2 ปีที่แล้ว +2

      Damn thats an awesome approach

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว +3

      Wow! This is nice!

    • @AlexandreRibeiroXRV7
      @AlexandreRibeiroXRV7 2 ปีที่แล้ว +2

      @@SyberMath thanks! I'm pretty sure I saw this technique used on another problem you solved a while ago, can't remember which one though.

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว +3

      @@AlexandreRibeiroXRV7 No problem. Me neither! 😁

    • @jakubabram9606
      @jakubabram9606 2 ปีที่แล้ว +1

      That's really good

  • @massimofranchi8275
    @massimofranchi8275 2 ปีที่แล้ว +8

    Very nice. If you change 2 with 3 you get a similar equation: √(3 + √( 3 - x )) = x; and the solution is x = 2

  • @carloshuertas4734
    @carloshuertas4734 2 ปีที่แล้ว +6

    Another great explanation, SyberMath! Thanks a lot!

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว

      Sure. Thank you!

  • @FaerieDragonZook
    @FaerieDragonZook 2 ปีที่แล้ว +1

    x=1 does work *if* you allow for sqrt(1) = -1, which technically is a solution. In fact, the other two solutions also work if you let yourself take a different combination of negative values of the square root function

    • @Vibranium375
      @Vibranium375 2 ปีที่แล้ว

      But sqrt function is strictly limited to a non negative range

    • @FaerieDragonZook
      @FaerieDragonZook 2 ปีที่แล้ว

      Only if it is defined as the principle value. It can also be defined as a multi-valued function.

    • @Vibranium375
      @Vibranium375 2 ปีที่แล้ว

      @@FaerieDragonZook a real function can not be multivalued by definition of a function. It would just be a relation between 2 sets otherwise

  • @Rbmukthegreat
    @Rbmukthegreat 2 ปีที่แล้ว

    Another fantastic video! I an currently in calculus, but I learn so many algebra tricks from you!

    • @Rbmukthegreat
      @Rbmukthegreat 2 ปีที่แล้ว +1

      I was chatting to some people and this integral came up, Integral of (e^x * sec^2(x)(sin(2x) + 2)dx its not super hard but its pretty interesting. Thought you might enjoy it.

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว

      Glad to hear that! 💖

  • @yllam3995
    @yllam3995 2 ปีที่แล้ว +5

    Let x be the solution, since it is an iteration,
    √(2 + √( 2 - x )) = x
    ( xx - 2 )^2 = 2 - x
    x^4 - 4xx + x + 2 = 0
    ( x - 1 )( x + 2 )( xx - x - 1 ) = 0
    x = 1 or -2 or ( 1 + √5 )/2 or ( 1 - √5 )/2
    The two negative values are rejected, square root is non-negative,
    Checking shows ( 1 + √5 )/2 is a solution but 1 is not,
    Note that this is the golden ratio 🤗

  • @koennako2195
    @koennako2195 2 ปีที่แล้ว

    Use formula (where a = 2 in this case) (sqrt(4a-3)+1)(1/2). If the first sign is a minus sign instead of a plus sign, it is (sqrt(4a-3)-1)(1/2).

  • @moonshine3033
    @moonshine3033 2 ปีที่แล้ว +4

    First time but passed great time to your live🤗 love it allot💖

  • @txikitofandango
    @txikitofandango 2 ปีที่แล้ว

    Thank you for not naming the video something like "a very GOLDEN problem"

  • @Neemakukreti5421
    @Neemakukreti5421 2 ปีที่แล้ว

    The (-2) value seems to work right when one plugs it in for the value of x in the equation unlike 1....doesnt that contradict of what you say....i know negetive values can't be accepted but why and why exactly is - 2 working when plugged in...

  • @sberacatalin2250
    @sberacatalin2250 2 ปีที่แล้ว

    Absolutely superb! Magnific! Mai vrem!

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว

      Mulțumesc! Vor veni mai multe...

  • @somedude1666
    @somedude1666 2 ปีที่แล้ว +1

    I love how many of these pop out the golden ratio quadratic equation

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว

      Me too! 🤩

  • @guidobertolotti9761
    @guidobertolotti9761 2 ปีที่แล้ว

    I think we have to demonstrate that we have convergence before calculate the limit, but I don't know how to do it.

  • @kinshuksinghania4289
    @kinshuksinghania4289 2 ปีที่แล้ว

    I knew this had some golden touch to it ✨

  • @juanmolinas
    @juanmolinas 2 ปีที่แล้ว

    really nice golden sotution!!

  • @레오폴드쇼팽
    @레오폴드쇼팽 ปีที่แล้ว

    How did you prove the convergence of sqrt(2+sqrt(2-sqrt(2+sqrt(2-...))))?

  • @roberttelarket4934
    @roberttelarket4934 2 ปีที่แล้ว

    This was a golden explanation(solution).

  • @s1ng23m4n
    @s1ng23m4n 2 ปีที่แล้ว +2

    2 - x = x^4 - 4x^2 + 4
    ...
    (x-1)(x+2)(x^2 - x - 1) = 0
    x can not be negative so x != -2 and x != -1/φ
    x definitely greater than 1 so x != 1
    at the rest we have x = φ - golden ratio

  • @taiky8259
    @taiky8259 2 ปีที่แล้ว

    Really interesting !

  • @nicogehren6566
    @nicogehren6566 2 ปีที่แล้ว

    very nice question

  • @That_One_Guy...
    @That_One_Guy... 2 ปีที่แล้ว

    x = sqrt(2+sqrt(2-sqrt(...))) = sqrt(2+sqrt(2-x))
    x^2 - 2 = sqrt(2-x)
    The condition :
    1. x >= 0
    2. x > sqrt(2)
    3. 2-x => 0 -> x =< 2
    4. x^2 - 2 >= 0 => x =< -sqrt(2) (doesnt satisfy c1) or x => sqrt(2)
    The condition for this equation is going to be
    sqrt(2) < x =< 2 (between sqrt(2) and 2 or equal 2)
    x^4 - 4x^2 + 4 = 2-x
    x^4 - 4x^2 + x + 2 = 0
    x^2 * (x^2 - 4) + (x+2) = 0
    (x+2)(x^2 * (x-2) + 1) = 0
    Divide by x+2 because x = -2 is not a solution
    x^3 - 2x^2 + 1 = 0
    x^3 = 2x^2 - 1
    Now im going to try use integer factorization in hope that one of the solution is an integer
    x^3 = (sqrt(2)x + 1)(sqrt(2)x - 1)
    This equation on the right has 2 factorization term meanwhile on the left you have 3 factorization term, let's try to invite 1 as the 3rd factor on the right hand side
    x^3 = (sqrt(2)x + 1)(sqrt(2)x - 1)*1
    So there are 2 possibilities :
    (sqrt(2)x+1 = 1 AND sqrt(2)x - 1 = 1) OR x^3 = 1
    (sqrt(2)x = 0 AND sqrt(2)x = 2) OR x = 1
    (x = 0 AND x = sqrt(2)) [either one doesnt satisfy) OR x = 1
    x = 1
    x^3 - 2x^2 + 1 = (x-1)(x^2 - x - 1)
    x^2 - x - 1 = 0
    as we all know the above solution is either x = -1/phi or x = phi
    x = -1/phi = -0.618 doesnt satisfy and so does x = 1
    So the only solution is x = phi = 1.618 which make sense because phi^2 = phi+1 = 2.618 and that number is bigger than the 2 in the sqrt function in the very beginning

  • @jimmykitty
    @jimmykitty 2 ปีที่แล้ว

    *Such a cool experience* 😎😌

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว +1

      Glad to hear that!

    • @roberttelarket4934
      @roberttelarket4934 2 ปีที่แล้ว +1

      It was also a "golden" experience!

  • @pgotexas
    @pgotexas 2 ปีที่แล้ว +1

    Cool problem!!!

  • @CometSpy
    @CometSpy 2 ปีที่แล้ว

    I used synthetic division at last

  • @nna7yk
    @nna7yk 2 ปีที่แล้ว

    Okay... and now solve this for an exact value of x without using approximation... √(2 + √(2 - √( 2 + x ))) = x (...if you've finished it you can also try this: √(2 - √(2 + √( 2 - x ))) = x ;) )

  • @justmath331
    @justmath331 2 ปีที่แล้ว

    Similar to that of a Putnam problem only the number there was 7

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว +1

      Really? I did not know that!

  • @paulkolodner2445
    @paulkolodner2445 2 ปีที่แล้ว

    Why on earth would you make this so complicated? Let the whole thing equal x. If you square it and subtract 2, you get x again. In other words, x^2 - x - 2 = 0. This is equal to (x-2)*(x+1).

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว +1

      That’s not right!

    • @paulkolodner2445
      @paulkolodner2445 2 ปีที่แล้ว +1

      @@SyberMath Oh, I missed the minus sign. So you have to end up with a quartic. Never mind. I'll be leaving now.

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว

      @@paulkolodner2445 No worries! it would be nice if that was the case. ☺

  • @yoav613
    @yoav613 2 ปีที่แล้ว

    Nice and easy😀

  • @krishnabhargavn5133
    @krishnabhargavn5133 2 ปีที่แล้ว

    I got 1,-1 and -2 as solution but 1 is the answer.

  • @Studentmath
    @Studentmath 2 ปีที่แล้ว +1

    Try Ramanujan Summation series.
    ♾ = -1/12

    • @Vibranium375
      @Vibranium375 2 ปีที่แล้ว

      That is wrong

    • @Vibranium375
      @Vibranium375 2 ปีที่แล้ว

      Ramanujan summation is just a way of assigning a value to an expression. The actual Cauchy sum diverges so u can't say inf =-1/12. The real value is "inf" or more rigorously, the sum doesn't have a value

  • @yllam3995
    @yllam3995 2 ปีที่แล้ว

    ( 1 + √5 )/2

  • @СнежныйБарс-г2я
    @СнежныйБарс-г2я 2 ปีที่แล้ว

    504//3.03.22. Решение не понятно.

  • @bigalxyz
    @bigalxyz 2 ปีที่แล้ว

    I don’t like this type of sequence…not a well defined series, surely?

    • @Vibranium375
      @Vibranium375 2 ปีที่แล้ว

      It is well defined I think

    • @Vibranium375
      @Vibranium375 2 ปีที่แล้ว

      Let a1=√2 and a_n = √(2-a_(n-1)) if n is even and a_n = √(2+a_(n-1)) if n is odd. Now take the odd indexed terms of this series and you are done

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว

      Why not?