LLM Tutorial REVOLUTIONIZED with PydanticAI's AI-Powered Tech Support

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ม.ค. 2025

ความคิดเห็น • 9

  • @atefataya
    @atefataya  2 วันที่ผ่านมา +2

    📌 Quick Reference Guide for This Tutorial:
    00:06 Intro
    00:53 Introduction
    01:44 PydanticAI Philosophy
    02:38 PydanticAI Core Components
    05:19 Demo: Building Tech Support AI Agent using PydanticAI
    24:32 My Final Thoughts about PydanticAI
    💡 Pro Tips:
    - Install requirements first: pydantic-ai, openai
    - Keep your OpenAI API key ready
    Got questions? Drop them below! I respond to all comments about implementation challenges.
    Full code: tinyurl.com/ysz6cuf7

  • @pedroandresgonzales402
    @pedroandresgonzales402 วันที่ผ่านมา +2

    Gracias por las pista de audio!!!

    • @atefataya
      @atefataya  วันที่ผ่านมา +1

      ¡Me alegro que te haya gustado la música de fondo! Siempre intento seleccionar pistas de audio que complementen bien el contenido técnico sin distraer del aprendizaje. ¡Gracias por tu comentario! 😊

  • @arthuraquino8356
    @arthuraquino8356 วันที่ผ่านมา +2

    What is your opinion between it and langgraph?

    • @atefataya
      @atefataya  วันที่ผ่านมา +3

      @arthuraquino8356 Thanks for your question. PydanticAI and LangGraph are both amazing tools for building AI applications, but they serve different primary purposes and excel in different areas.
      PydanticAI focuses on bringing type safety and validation to AI agent development making it particularly strong for building robust production ready applications. Its integration with Pydantic models makes it especially powerful for Python developers who need to ensure reliable data handling in their AI systems.
      LangGraph, specializes in orchestrating complex workflows between language models and tools. It's particularly good at managing multi-step processes and creating sophisticated interaction flows betwen different components of an AI system. You might think of it as being more focused on the coordination and flow of operations.
      I recommend using PydanticAI if you're prioritizing type safety and want to build production ready applications with strong data validation. Choose LangGraph if your primary need is orchestrating complex workflows.
      Please note that in practice, they can actually complement each other. You can use PydanticAI's type safety features alongside LangGraph's workflow management capabilitities for complex application. Let me know if you need more information about how to use both in the same application.

    • @arthuraquino8356
      @arthuraquino8356 วันที่ผ่านมา +2

      @@atefataya Thanks for your point of view. It would be interesting for you to do an example later using both in a complementary way, demonstrating the best side of each one.

    • @atefataya
      @atefataya  9 ชั่วโมงที่ผ่านมา +2

      @@arthuraquino8356 Thanks. Yes it is in the plan I am preparing the guide for building Robust AI Agents which I will share on my blog and a short video on my channel.

  • @vfxmaster7596
    @vfxmaster7596 วันที่ผ่านมา +1

    سلام عاتف جان شما ایرانی که بتونیم با همدیگه همکاری داشته باشیم؟

    • @atefataya
      @atefataya  วันที่ผ่านมา +1

      سلام و ممنون از نظرتون. کانال من روی آموزش هوش مصنوعی و آخرین اخبار تکنولوژی تمرکز داره. خوشحال میشم از طریق نظرات زیر ویدیوها در مورد محتوای آموزشی بحث و تبادل نظر کنیم. 🤖💻