If x^y=y^x, then dy/dx=?

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ก.พ. 2025

ความคิดเห็น •

  • @NoisyKoel
    @NoisyKoel 3 หลายเดือนก่อน +5

    I love your videos!! I am picking up Calculus to do my Masters soon. By the way, at around 7:32, shouldn't the whole thing be multiplied by xy / x^y in the numerator AND the denominator?
    Because at 7:32, I think you accidentally wrote the multiplying denominator as y^y instead of x^y. (I.e. xy / y^y when it should be xy / x^y)

    • @bprpcalculusbasics
      @bprpcalculusbasics  3 หลายเดือนก่อน +3

      Yes you are right. Thanks for pointing that out!

    • @NoisyKoel
      @NoisyKoel 3 หลายเดือนก่อน +1

      ​@bprpcalculusbasics my pleasure!! 😁 Thank you for your thorough lessons!! 😃

  • @chakwowu6825
    @chakwowu6825 3 หลายเดือนก่อน +1

    I like the X'mas tree behind you.

  • @henkhu100
    @henkhu100 3 หลายเดือนก่อน +1

    You first have to find out that y is a differentiable function of x if x^y=y^x before you can use the expression dy/dx
    See also an earlier reaction that there are two values for y if x=2

    • @chaosredefined3834
      @chaosredefined3834 3 หลายเดือนก่อน +1

      That's not a problem. We can also use this approach to find the derivative of a circle (x^2 + y^2 = r^2), despite the fact that, for any x such that -r < x < r, there will be two values of y that work. Things get a bit loose when working with derivates.

    • @TheEternalVortex42
      @TheEternalVortex42 3 หลายเดือนก่อน

      Look up the implicit function theorem. It guarantees we can write this function as differentiable y = f(x) or x = g(y) everywhere.

    • @henkhu100
      @henkhu100 3 หลายเดือนก่อน

      @@TheEternalVortex42 The implicit function theory is not always applicable. It is valid under certain conditions.
      suppose we have the following relation in the real number system:
      (x+lny)sqrt(-(x-3)^2)=x^2-y
      You can try to find dy/dx but does it have any meaning? The only x value in the domain is x=3 (with y=9). So the graph is a single point. has dy/dx any meaning despite the fact that you can find an expression for it?
      You can even define a relation where there is no graph at all: (x+lny)sqrt(-(x-3)^2)=x^2-y + sqrt(-(y-3)^2) but you can apply implicit differentiation giving a meaning less result. So it is always important to know that a given relation between x and y results in a differentiable function.
      You write: "It guarantees we can write this function as differentiable y = f(x) or x = g(y) everywhere." But are we sure that the given relation in the video complies with the conditions to use the principle of implicit differentiation?

  • @kb27787
    @kb27787 3 หลายเดือนก่อน +4

    Does this exist? Let's say x = 2 there will be 2 Y values (2 and 4) that fulfill this condition. So this is not a function in the strictest sense as one input can give multiple outputs. I imagine the graph would look like the straight line with slope of 1 (x=y) and then something else. Can we take the derivative of something that is not a function?

    • @chaosredefined3834
      @chaosredefined3834 3 หลายเดือนก่อน +1

      That's not a problem. We can also use this approach to find the derivative of a circle (x^2 + y^2 = r^2), despite the fact that, for any x such that -r < x < r, there will be two values of y that work. Things get a bit loose when working with derivatives.

    • @TheEternalVortex42
      @TheEternalVortex42 3 หลายเดือนก่อน +1

      This is called an implicit equation. By the implicit function theorem we have some conditions under which an implicit equation gives you one or more (differentiable) functions. In that case the approach of implicit differentiation is correct for finding the derivatives of those functions.
      For example the simpler implicit equation x^2 + y^2 = 1 gives four functions y = sqrt(1-x^2) and x = sqrt(1-y^2) and the flipped versions. But in post cases you cannot write them down explicitly.

  • @issssse
    @issssse 3 หลายเดือนก่อน

    Some series approach infinity pretty quickly, and some very slowly 🐌 (just watched your harmonic series video). But which series approach infinity the slowest?
    Love the videos ❤

  • @arcangyal2269
    @arcangyal2269 3 หลายเดือนก่อน

    Can we use dy/dx = - partial x / partial y?

  • @andirijal9033
    @andirijal9033 2 หลายเดือนก่อน

    Explisit function ?

  • @markcbaker
    @markcbaker 3 หลายเดือนก่อน +28

    Why not simplify to y*ln x = x*ln y before implicit differentiation

    • @stupidteous
      @stupidteous 3 หลายเดือนก่อน +19

      he did simplify in the last video. he was just showing how it could be done the other way to clear up the viewer's question at the beginning. it should be simplified though.

    • @mtaur4113
      @mtaur4113 3 หลายเดือนก่อน

      I am also wondering if lny/y = lnx/x has nontrivial solution. y=x is a solution curve. But there is another one, G(t)=ln(t)/t has a maximum at t=e and has pairs of positive values for t_1>e and 1

    • @giovannimariatanda9251
      @giovannimariatanda9251 3 หลายเดือนก่อน

      Bravo @markcbaker. Pure io penso sia più semplice e forse più elegante fare come dici. Così ho infatti proceduto in prima istanza. Ad ogni modo onore anche a BRP per il suo prezioso contributo.
      Virtute duce, comite fortuna hostes vicisti. (Cicero)

    • @stupidteous
      @stupidteous 3 หลายเดือนก่อน

      ​@@mtaur4113 i think he did make a video on it, x^y = y^x

    • @intothedarkness6242
      @intothedarkness6242 3 หลายเดือนก่อน

      same,i ended up with lny - yx^-1 / lnx - xy^-1

  • @hydra-f9h
    @hydra-f9h 3 หลายเดือนก่อน +2

    1:57 2:50 Why is y Not a constant, our only variable to respect when differenciating is x

    • @kevinpior5265
      @kevinpior5265 3 หลายเดือนก่อน +5

      Because y is a function of x here

    • @ve4rexe
      @ve4rexe 3 หลายเดือนก่อน +1

      because y is a function of x, in x

  • @miguelaphan58
    @miguelaphan58 3 หลายเดือนก่อน

    .
    a most usefull lesson !!

  • @profjaildervicente
    @profjaildervicente 3 หลายเดือนก่อน

    Parabéns, muito bom o seu conteúdo...

  • @priscilas24
    @priscilas24 3 หลายเดือนก่อน

    Now I can understand lot better 😊

  • @Mediterranean81
    @Mediterranean81 3 หลายเดือนก่อน +1

    I did it using implicit differentiation

    • @Mediterranean81
      @Mediterranean81 3 หลายเดือนก่อน +1

      y*ln x = x ln y
      y/ln y = x/ln x
      ln y / y = ln x /x
      y’ (1-ln y) /y^2 = (1-ln x)/x^2
      y’ = (1-ln x)y^2 /(1-ln y)x^2

    • @AmiablyAnxious
      @AmiablyAnxious 3 หลายเดือนก่อน

      ​@@Mediterranean81Is there any reason we can manipulate the fraction even more by increasing their power to the negative one? It seems a bit too much like steamrolling through....

  • @TheBlueboyRuhan
    @TheBlueboyRuhan 3 หลายเดือนก่อน

    dy/dx = -Fx / Fy makes it so much faster and easier to do

  • @perost1227
    @perost1227 3 หลายเดือนก่อน +1

    nice

  • @KeaneMbae
    @KeaneMbae 3 หลายเดือนก่อน

    Your really smart and great at calculus why don't you try using all this math skills in writing a good program with a functional programming language e.g. Haskell/APL maybe you are also good at that

  • @chrisglosser7318
    @chrisglosser7318 3 หลายเดือนก่อน

    I wrote everything in terms of logs

  • @notsoancientpelican
    @notsoancientpelican 3 หลายเดือนก่อน

    The original equation implies that
    Y equals X.
    ... Is it not so?
    If it is so, then dy/dx is 1.
    Simplex sigillum veri.

    • @bain8renn
      @bain8renn 2 หลายเดือนก่อน +1

      2^4=4^2
      2=/=4
      x=/=y

  • @cesarluis6335
    @cesarluis6335 3 หลายเดือนก่อน

    I always go to the most easy one, the number 1 😂😂😂😂 the other ones are for crazy people❤😅

  • @Huegxiele000
    @Huegxiele000 3 หลายเดือนก่อน

    Solve Einstein's field equations