Using Laplace Transform to solve Second Order Homogeneous Differential Equation.

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 16

  • @georgesadler7830
    @georgesadler7830 ปีที่แล้ว

    Professor Tambuwal, thank you for an excellent video/lecture on Using Laplace Transform to solve Second Order Homogeneous Differential Equations. There are multiple ways to solve Second Order Homogeneous Differential Equations.

  • @Betheran
    @Betheran 7 หลายเดือนก่อน +1

    I now understand this method, thanks so much sir

  • @boysenbeary
    @boysenbeary 8 หลายเดือนก่อน +1

    Thank you, very helpful

  • @NsohLawrence-xl3zb
    @NsohLawrence-xl3zb 4 หลายเดือนก่อน

    What could be the cause if at the level of deriving the partial fraction, where the constants are A,B and C, B and C keep turning out to be zero, does it mean the equation has a problem or my solving is wrong (it was from a different equation)!?

  • @abdulwajid7259
    @abdulwajid7259 ปีที่แล้ว

    Thank you sir

  • @abdulkahin8270
    @abdulkahin8270 3 ปีที่แล้ว +1

    Keep up bro

  • @Samguy55
    @Samguy55 ปีที่แล้ว

    Please help me explain how to solve laplace transform of y’’ on its own. Thanks.

    • @carultch
      @carultch ปีที่แล้ว

      If you know the Laplace transform for y, let's call it capital Y, then to differentiate, you multiply by s and subtract y_0. Multiply by s^2 and subtract (y0' + s*y0) to double differentiate.
      For this example:
      y" + 5*y' + 6*y = 0
      Consider general initial conditions, y(0) = u, and y'(0) = v.
      The general solution for Y is:
      Y = (v + 3*u)/(s + 2) - (v + 2*u)/(s + 3)
      And its inverse Laplace time domain solution is:
      y = (3*u + v)*e^(-2*t) - (2*u + v)*e^(-3*t)
      Multiply by s^2 to differentiate, and then subtract applicable terms for the initial conditions:
      L{y"} = s^2*Y - u*s - v
      L{y"} = (v + 3*u)*s^2/(s + 2) - (v + 2*u)*s^2/(s + 3) - u*s - v
      Change to common denominators:
      L{y"} = -(6*s*u + 5*s*v + 6*v)/((s + 2)*(s + 3))
      Partial fractions:
      -(6*s*u + 5*s*v + 6*v)/((s + 2)*(s + 3)) = A/(s + 2) + B/(s + 3)
      Result after using Heaviside coverup to find A & B:
      L{y"} = (12*u + 4*v)/(s + 2) + (18*u + 9*v)/(s + 3)
      Which means:
      y" = (12*u + 4*v)*e^(-2*t) - (18*u + 9*v)*e^(-3*t)
      Compare with solution for y:
      y = (3*u + v)*e^(-2*t) - (2*u + v)*e^(-3*t)
      Observe that y" compares to y, by multiplying each term by the square of the coefficient on t in the exponent. It quadruples (i.e. (-2)^2) the first coefficient, and multiplies the second coefficient by 9, i.e. (-3)^2. Just as we'd expect would happen in a second derivative of exponential functions.

  • @josedejesuscamachodelarosa8988
    @josedejesuscamachodelarosa8988 3 ปีที่แล้ว

    It is wrong, The answer is not correct.

    • @tambuwalmathsclass
      @tambuwalmathsclass  3 ปีที่แล้ว +1

      produce a Video for the correct answer

    • @abdulkahin8270
      @abdulkahin8270 3 ปีที่แล้ว

      U don't say it's wrong like that as a mathematician. U show it's wrong by producing correct answer

    • @tambuwalmathsclass
      @tambuwalmathsclass  3 ปีที่แล้ว +1

      @@abdulkahin8270 I don't care about his rude comment, let him prove me wrong. I'm ready for his challenge.

    • @abdulkahin8270
      @abdulkahin8270 3 ปีที่แล้ว

      It's bcz of u that I understood o.d.e and matrices likes of cofactor of a matrix. I say thank u bro

    • @gregoryasuelimen3416
      @gregoryasuelimen3416 7 หลายเดือนก่อน

      someone said your answer is wrong because at 2mins 35sec you jumped a step in opening the bracket, but you are 100% right overall. Thank you for the video. I got similar question to solve tomorrow