Mordell-Weil theorem

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ธ.ค. 2024

ความคิดเห็น • 29

  • @caspermadlener4191
    @caspermadlener4191 7 หลายเดือนก่อน +35

    When you upload, I will drop everything to watch these videos :)

    • @sumedh-girish
      @sumedh-girish 7 หลายเดือนก่อน +1

      Here, looks like you dropped something

    • @abhisheksoni9774
      @abhisheksoni9774 7 หลายเดือนก่อน

      🎉❤

    • @Loots1
      @Loots1 7 หลายเดือนก่อน +1

      dont drop the soap

  • @kumargupta7149
    @kumargupta7149 7 หลายเดือนก่อน +8

    Person like you are uploading it is really pleasure to see. ❤❤

  • @aziz0x00
    @aziz0x00 7 หลายเดือนก่อน +25

    Drake K-Dot beef: ❌️
    The best prof dropping new vid: 🎉🎉🎉❤

    • @Loots1
      @Loots1 7 หลายเดือนก่อน +4

      Tryna strike a chord and it's probably a-minooooooooooooooooooooooooooooooooooooooooooooooooooor

  • @Yashhh02
    @Yashhh02 5 หลายเดือนก่อน

    Prof thank you so much for your contributions for ppl who can't afford expensive courses.

  • @giupeloverofthestars
    @giupeloverofthestars 7 หลายเดือนก่อน +10

    Thank you professor

  • @peterg2836
    @peterg2836 6 หลายเดือนก่อน +1

    Just a comment about the history. I have NOT read any of the original sources at all, so definitely 'fwiw', but: I had always been under the impression that Mordell had 'only' dealt with the rational points on an e.c. over the rationals, and that Weil introduced the machinery to handle a.v.s over number fields - this seems to match Wikipedia's description of the history, and does match Wolfram World's "... For elliptic curves over the rationals Q, the group of rational points is always finitely generated [...] was proved by Mordell (1922-23) and extended by Weil (1928) to Abelian varieties over number fields." Meanwhile, Manin's Appendix II of Mumford's AV's claims that Lang's contribution was to deal with the case of the base field being of finite type over the prime field. On the other hand, some of the internet believes that Neron did this...

  • @FractalMannequin
    @FractalMannequin 7 หลายเดือนก่อน +5

    What a coincidence, I'm studying elliptic curves these days.
    11:53 "If we multiply by a positive integer that's an isogeny". I don't get this. The map 2× : E(Q) → E(Q) in general sholdn't be surjective since the Weak Mordell theorem states E(Q)/2E(Q) is only finite, not zero.

    • @willnewman9783
      @willnewman9783 7 หลายเดือนก่อน +5

      The multiplication by 2 map is surjective on "the entire elliptic curve," but not on the rational points.
      For any point p on E, there is another point q on E with 2q=p, but we cannot guarantee q is rational if p is.

    • @FTsandbag
      @FTsandbag 7 หลายเดือนก่อน +2

      Any nonzero morphism is surjective, but only on the algebraic closure.

    • @mm18382
      @mm18382 7 หลายเดือนก่อน

      Another question: in 3:28, why E(Q) finitely generated implies E(Q)/2E(Q) finite?

    • @willnewman9783
      @willnewman9783 7 หลายเดือนก่อน +3

      @@mm18382 If A is generated by a1,a2,....,an, then A/2A is generated by [a1],[a2],....,[an]. But now [ai] has order 2, and so there are at most 2^n different elements in A/2A, namely
      0
      [a1],[a2],....,[an],
      [a1]+[a2],[a2]+[a3],....,[a(n-1)]+[an],
      [a1]+[a2]+[a3],......
      ....
      [a1]+[a2]+....+[an]

    • @mm18382
      @mm18382 7 หลายเดือนก่อน

      Thanks for the reply, I don't agree, though, because A (and crucially A/2A) need not be commutative
      So a priori you can have an infinite sequence [a1], [a1]+[a2], [a1]+[a2]+[a1], ...
      Edit: E(Q) is commutative 😃

  • @davidwagner6116
    @davidwagner6116 7 หลายเดือนก่อน +3

    Mathematics videos for mathematicians. Thank you, Sir!

  • @dwellinginshadows
    @dwellinginshadows 6 หลายเดือนก่อน

    Hey professor, if you're reading this, do you plan on covering Graph Theory at all? If you have any insights on this topic I'd love to hear them.

  • @knight3481
    @knight3481 7 หลายเดือนก่อน +1

    Woah! I was looking for something like this because Mordel-Weil has some applications to F theory but was not able to understand it. This will definitely help.

  • @JoeMama-ws2kx
    @JoeMama-ws2kx 6 หลายเดือนก่อน +1

    I’m sorry guys, I don’t know where else to ask this and y’all seem pretty smart, so
    Could you interpret F(a) in the FTC the following way: Let's say G(T) is the function that "tracks" the area of f(x) from a point "a" exactly so G(a)=0. Let's say F(T) is some antiderivative of f(x). Then F(T)=G(T)+C.
    Then, G(T)=F(T) -C. But at point "a" we get:
    G(a) =F(a) -C F(a)=С.
    So therefore G(T)=F(T)-F(a)???
    So F(a) just happens to be that constant C that separates F(T) and G(T) because of the fact that G(a)=0?

  • @migarsormrapophis2755
    @migarsormrapophis2755 7 หลายเดือนก่อน +6

    yeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

  • @premkumar-so3ff
    @premkumar-so3ff 7 หลายเดือนก่อน +1

    Yes professor please upload from very basic level too. We want such series from you. Some of them very advanced to understand.

  • @abhisheksoni9774
    @abhisheksoni9774 7 หลายเดือนก่อน +2

    Prof. Do you teach from very basics ? Please
    I tried watching Group Theory lectures, they were very advanced for me.

    • @aurinkona
      @aurinkona 7 หลายเดือนก่อน

      it would behoove you to google 'fields medal'

    • @JamesBlevins0
      @JamesBlevins0 7 หลายเดือนก่อน +1

      Try studying one of
      - Beachy & Blair's "Abstract Algebra" or
      - Herrmann & Sally's "Number, Shape, & Symmetry" or
      - Birkhoff & MacLane's "Modern Algebra",
      and then rewatch his group-theory video.
      You might also like to look at two beautiful books:
      - Niven, Zuckerman, and Montgomery, "Introduction to Number Theory" or
      - Silverman & Tate's "Rational Points on Elliptic Curves" (based on lectures to [undergraduate] students at Haverford or Swarthmore, I believe).
      If you have a masochist kink, try Serge Lang's "Algebra".

  • @yukihirotaschchen3929
    @yukihirotaschchen3929 5 หลายเดือนก่อน

    ich liebe dich

  • @AndrewZeng-m1k
    @AndrewZeng-m1k 7 หลายเดือนก่อน

    Poggers