780|冯晓娟:破解土壤碳库的谜团|中国科学院植物研究所|格致SELF

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ส.ค. 2024
  • 欢迎订阅我的频道,bit.ly/3tnM6wI ,佛系上新😊
    冯晓娟:中国科学院植物研究所研究员、副所长
    在挖遍中国北方13个典型草地以后,我们得到一个出人意料的结论
    土壤这样一个我们脚底下的碳库,在碳中和目标中发挥着非常重要的作用。
    大家好,我是冯晓娟,来自中国科学院植物研究所。我和我的团队主要研究土壤碳,那它和我们今天讲到的降碳究竟有什么关系呢?
    提到碳中和,大家可能会想到节能减排,也就是减少对煤、气、油等等化石燃料的使用。但是实际上,要实现碳中和,我们还有另外一种思路,就是把大气中的二氧化碳存储在自然界其他的一些碳储库,比如说土壤中。这也能够帮助我们实现对二氧化碳的捕获或者说所谓的碳封存。
    其实,碳封存是在自然界里每天都在发生的一个天然工程,这里就要重点介绍一下我们的研究对象土壤了。
    土壤是陆地生态系统里最大的活性碳库,它的碳储量是大气二氧化碳的3倍以上,每年土壤和植被这样一个系统向大气二氧化碳交换的二氧化碳通量是人为排放量的10倍以上。
    根据欧洲国家的估算,如果每年增加(农业)土壤碳库的千分之四,我们就可以抵消人为化石燃料使用排放的二氧化碳。因此,利用土壤进行碳封存被《联合国气候变化框架公约》列为实现长期碳中和的一个关键途径。
    土壤中的碳从哪儿来?
    那么,土壤的碳库是如何形成的呢?
    提到土壤,土壤和岩石或者沙滩的一个关键区别就是它的有机质,这些有机质实际是由植物初级生产者通过光合作用把二氧化碳转换成为一些有机化合物,然后输入进土壤。这些有机质又进一步地被降解者比如土壤的微生物、土壤动物的转换成形态各异的一些有机化合物。这些复杂的混合物统称为土壤有机质,也构成了土壤的有机碳库。
    因此土壤的碳库可能来自于植物,也可能来自于土壤动物、土壤微生物甚至是岩石。要实现土壤碳封存,我们就需要了解如何去促进土壤碳库的积累,它的关键调控因素是什么。
    这个问题听上去好像很简单,但事实上这是一个非常复杂的科学问题。在全球变化,包括变暖、氮沉降、二氧化碳升高这样一些背景下,我们对于土壤碳库储量以及稳定性的变化了解都非常不清晰,这也被《科学》(Science)杂志誉为“最后的前沿”。
    提到土壤碳的积累,大家可能就会想到植物凋落物或者说枯枝落叶,枯枝落叶在腐烂分解以后所残余的碳会在土壤中积累或者沉积下来。科学界传统上也普遍认为植物输入的这些凋落物是土壤碳积累的一个最主要驱动者,而且科学家们发现在陆地植物里面一种特殊的大分子可以调控凋落物的降解速率,就是木质素。
    木质素是什么?它是树干等等木质部里边最主要的成分,有非常复杂而且稳定的化学结构,所以它的降解相对来说比较困难、缓慢。当凋落物的木质素含量高时,它的降解比较慢,也更容易进入土壤,对土壤碳积累做出贡献。因此,传统观念认为,木质素是驱动土壤碳长期积累的一个重要驱动力或者贡献者,很多的碳库模型也把木质素作为用来界定或者表征稳定碳库的一个重要参数。
    如果木质素确实是主导土壤碳积累的重要驱动力,那么我们只要增加土壤中木质素的输入,比如说往土壤里增加一些木质部的树干,就可以很好地提升土壤碳封存了,对不对?这个想法听上去非常美好。
    尽管进入土壤中的木质素量是比较大的,但是,木质素进入土壤以后真的能够主导土壤碳的积累吗?或者说,在凋落物中降解比较慢的木质素,进入土壤以后也能够长期稳定地积累吗?这些问题其实没有得到很好的研究或者验证。
    一个很偶然的机会,在我博士一年级的时候,我开始研究土壤中木质素的稳定性。
    当时在多伦多大学,我隔壁实验室里的生态学家在学校的后山谷开展了一个土壤增温实验。他们把加热棒插入到土壤的表层土壤里去,然后利用电脑控制,使得增温区土壤的平均温度要比没有插入加热棒的对照区提高4-5℃。这个实验进行了14个月,一年多的时间。
    在这个实验快要结束的时候,负责这个实验的一个博士生叫凯文,他在走道里面遇到了我,然后跟我说:“我听说你要研究土壤对全球变化的响应,我正好有一个增温实验,你想不想来采一下样?”我说:“好啊。”就这样,我很意外地获得了一份土壤增温实验的样品。
    起初我们对这样一个意外获得的样品并没有很高的期待。我们预想的是,比较难以降解的木质素可能很难在14个月这样一个相对较短的增温实验里面发生很大的变化。但是分析结果发现,在增温区的土壤中,木质素的含量显著地低于对照组不增温的土壤。而且来自于植物叶片凋落物的角质,也就是叶片角质层里面的一些脂类化合物,在增温的土壤里面迅速地积累。说明土壤的不同碳组分发生了不同方向的、截然相反的变化。
    我非常激动地把这个结果给我的师兄看。我师兄说:“很有意思,但是怎么能够知道现在看到的这种差异是由增温实验导致的?在增温实验以前这个对照区和增温区的土壤有机质组成一样吗、相似吗?”这是一个很好的问题,它让我沮丧了很久。
    又过了几个月,我又在走道里遇到了凯文,他跟我说,他已经完成了博士答辩,马上要离开多伦多了,然后又问我,给我的那些样品有没有分析,结果怎么样。我说:“结果很好,可是我们没有办法证明看到的差异是由增温引起的。因为我们没有增温实验以前的样品,没办法去区分是不是两个区域土壤本身就有差异性。”
    凯文拍了一下我的肩膀,对我说:“你想要那些样品吗?”我两眼放光的看着他说:“你有吗?”他说:“当然啦,就在冰柜里啊。”
    就这样,我们获得了上面这张图。看上去非常地无聊,它告诉我在增温实验以前,增温区和对照区的土壤有机质的不同组分含量非常相似,没有差异。但就是这样一个补充支持了我们的结论,也就是在一个相对比较短期的土壤增温实验里面,我们认为比较稳定、难以降解的木质素可以发生快速的、加速的降解。
    👇🏽歡迎嘗試我頻道裡的其他影片👇🏽
    通信: • 通信
    人工智能: • AI·人工智能
    航天: • 航天
    宇宙: • 宇宙
    教育: • 教育
    少年中国: • 少年中国
    植物: • 中国科学院植物研究所
    生物: • 生物
    心理: • 心理
    医学: • 医学
    生态: • 医学
    环境: • 环境
    药学: • 药学
    数学: • 数学
    物理: • 物理
    化学: • 化学
    艺术: • 艺术
    摄影: • 摄影
    传媒: • 传媒
    考古: • 考古
    恐龙: • 恐龙
    地震: • 中国科学院地质与地球物理研究所
    诺贝尔奖: • 诺贝尔奖
    工程: • 工程
    音乐: • 音乐
    建筑: • 建筑
    能源: • 能源
    #中科院
    #格致论道
    #科学
    #科普
    #知识
    #知识科普
    #格致論道
    #科學
    #知識
    #知識科普
    #教育
    #self

ความคิดเห็น • 1