A^2 = I

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ม.ค. 2025

ความคิดเห็น • 37

  • @RalphDratman
    @RalphDratman 5 ปีที่แล้ว +3

    Dr Peyam is amazing! These are such a pleasure to watch.

  • @juliankulshammer9637
    @juliankulshammer9637 5 ปีที่แล้ว +8

    Next video: A satisfies an arbitrary quadratic equation :-)

    • @yunadener7126
      @yunadener7126 5 ปีที่แล้ว +1

      The problem P(A)=0 is trivial whenever P is split with simple roots because then A is diagonalizable. (A-aI)²=0 is not that hard either if you can solve A²=0.

  • @jameswilson8270
    @jameswilson8270 5 ปีที่แล้ว +1

    Sweet job Dr. Peyam! For those who might be scratching their heads about this, Dr. Peyam accidentally said nontrivial instead of trivial at first (unless I misheard or misunderstood him).

  • @mundodejoel
    @mundodejoel 5 ปีที่แล้ว +2

    Thank you Dr Peyam! Awesome class!

  • @MrRyanroberson1
    @MrRyanroberson1 5 ปีที่แล้ว

    there are also such gem matrices as ±[0,1;1,0], the case of a "flip" matrix, which inverts the order of rows on one side or columns on the other. Or the general case of any permutation of vectors with only one dimension being 1 and which can be decomposed into smaller matrices of the same form. The general case for some A: -A, [1,0;0,A], and [0,A;A,0]. Given A^2 = i: (-A)^2 = (-1)^2 A^2 = i. [1,0;0,A]^2 = [1,0;0,A^2] = [1,0;0,i] = i. And finally [0,A;A,0]^2 = [A^2,0;0,A^2] = [i,0;0,i] = i

    • @MrRyanroberson1
      @MrRyanroberson1 5 ปีที่แล้ว

      technically the number 1 is part of the i case, and [1,0;0,A] should be replaced with [A,0;0,B], which squares to [A^2,0;0,B^2] = [i,0;0,i] = i, for 0 can also be the zero matrix (of any size necessary)

    • @MrRyanroberson1
      @MrRyanroberson1 5 ปีที่แล้ว

      After you mentioned P and P^-1, this gave me an idea which generalizes things much farther (without doing PP^-1): the three cases are: set(all A) contains: -A, [A1,0;0,A2], and [0,kA;A/k,0] for any nonzero k.

    • @MrRyanroberson1
      @MrRyanroberson1 5 ปีที่แล้ว

      actually i found that there are matrices which this doesn't cover: something like sqrt(1/2) * [1,1;1,-1], which squares to i. an additional condition is needed: set(all A) contains (A1 + A2) whenever A1A2+A2A1 = 0, which is much harder to recursively define since AB+BA = 0 scenarios are a bit... tricky.

  • @Ensivion
    @Ensivion 5 ปีที่แล้ว

    I think T = T inverse right? any linear transformation that is its own inverse are cases. In terms of R^n it's just a rotation or a reflection. Reminds me of Pauli Spin matricies

  • @sandorszabo2470
    @sandorszabo2470 5 ปีที่แล้ว +1

    Hi Peyam, Why it is an unlisted video? Your characterization has a nice geometric description.

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      It will be published at some future time

  • @sergioh5515
    @sergioh5515 5 ปีที่แล้ว

    Very beautiful

  • @MA-bm9jz
    @MA-bm9jz 5 ปีที่แล้ว +1

    Or you can do it using the jordan canonical form

  • @MrSami1004
    @MrSami1004 5 ปีที่แล้ว

    Just a question But first of all good video as always
    but what if you are working over K-Vector space where K is a field such that 2=0 ?
    Because you won't be able to show that the V is in direct sum since you are using the fact that 2x=0 implies that x=0
    Then in this case (If K is such that 2=0) does it implies that if A*A=I then A = I ?

    • @Pika250
      @Pika250 5 ปีที่แล้ว

      Mir Sami What about the matrix
      0 1
      1 0
      ?

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      But in that case you can directly figure out which A works because there are only 16 possibilities for A

    • @ahoj7720
      @ahoj7720 5 ปีที่แล้ว

      There are 16 possibilities for 2x2 matrices and when the base field is Z/2Z only. Linear algebra on fields of characteristic 2 is very tricky...

  • @SR-kd4wi
    @SR-kd4wi 5 ปีที่แล้ว +2

    Hey is this undergrad level or postgrad level? Because I'm in high school.

    • @ibrahinmenriquez3108
      @ibrahinmenriquez3108 5 ปีที่แล้ว

      Linear algebra is mostly taught in first year of most math related career

    • @ajokaefi
      @ajokaefi 4 ปีที่แล้ว

      If you have the curiosity, it doesn't matter in which grade you are in, ... just follow your "in-drive" and everything will be allright

  • @peppybocan
    @peppybocan 5 ปีที่แล้ว +3

    Symplectic Matrices are beauties. Check them out.

  • @rupkumarsarkar94
    @rupkumarsarkar94 5 ปีที่แล้ว +1

    Please upload AB=I 🤗
    both squar matrices

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +1

      B = A^-1

  • @frozenmoon998
    @frozenmoon998 5 ปีที่แล้ว

    Amazing!

  • @ThePharphis
    @ThePharphis 4 ปีที่แล้ว

    A^3 when?

  • @BirdWingTV
    @BirdWingTV 2 ปีที่แล้ว

    What is name of this matrix A²=I?

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +1

      Idempotent

    • @BirdWingTV
      @BirdWingTV 2 ปีที่แล้ว

      @@drpeyam thx sir

  • @ilouleoy7502
    @ilouleoy7502 5 ปีที่แล้ว

    Υπέροχο

  • @Handelsbilanzdefizit
    @Handelsbilanzdefizit 5 ปีที่แล้ว

    Every Matrix that is its own inverse, satisfies A²=I

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      And conversely

    • @Handelsbilanzdefizit
      @Handelsbilanzdefizit 5 ปีที่แล้ว

      @@drpeyam
      I would prefere more arithmetic lectures.
      The essence of numbers is the hard deep core of maths.
      Diophant, primes, etc.
      Or as C.F.Gauss said:
      "When maths is the queen of science, then arithmetic is the queen of maths."

    • @MA-bm9jz
      @MA-bm9jz 5 ปีที่แล้ว

      @@Handelsbilanzdefizit functional analsys way cooler than arithmetic

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Yeah, I’m not a fan of arithmetic! Analysis is way cooler

  • @paxdriver
    @paxdriver 5 ปีที่แล้ว

    This guy has good drugs