Integrating a Filthy boi - Papa's Improvised Session #1 [ integral sqrt(tan(x)) ]

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ก.พ. 2025
  • Merch :v - teespring.com/...
    Help me create more free content! =)
    / mathable
    Improvised Session Playlist: • Improvised Sessions
    Arctan integral: • Integral 1/(x^2+1) und...
    ln integral: • The integral 1/(x+1) a...
    Complete square: • Completing the square:...
    Partial Fractions outtake: • Behind the Meme: Parti...
    That boi has been a lot of work, but it was fun giving it a shot! =) If you like me improvising sht then pls say so in the comments =)
    #FreshToadwalker
    Twitter: / flammablemaths
    Facebook: / flammablemaths
    Visit my website! =)
    mathable.me/

ความคิดเห็น • 313

  • @GreenMeansGOF
    @GreenMeansGOF 6 ปีที่แล้ว +612

    16:03 it should be -1 not +1

    • @janepianotutorials
      @janepianotutorials 5 ปีที่แล้ว +39

      Fun. Let t= tan x ? A little faster.

    • @bunchesofmusic6751
      @bunchesofmusic6751 3 ปีที่แล้ว +5

      @GreenMeansGO I’m a little late to respond obv but I noticed that too
      Super epic integration tho!

    • @cooldawg2009
      @cooldawg2009 2 ปีที่แล้ว

      @@janepianotutorials how does that help make it faster?

    • @janepianotutorials
      @janepianotutorials 2 ปีที่แล้ว +2

      @@cooldawg2009 the integrand becomes [(t)^1/2 ] / [t^2 + 1]. Still complicated to solve after that. Has anyone differentiated his answer to confirm the solution? I just tried. No go, but I probably goofed. Curious, I checked WolframAlpha, they did what I did! But came up with a different answer. Hmm…. Headache

  • @oliverhees4076
    @oliverhees4076 6 ปีที่แล้ว +695

    be sure to check by differentiation

    • @V-for-Vendetta01
      @V-for-Vendetta01 6 ปีที่แล้ว +25

      Lol

    • @blackpenredpen
      @blackpenredpen 6 ปีที่แล้ว +164

      agree!

    • @omarfarouk3848
      @omarfarouk3848 6 ปีที่แล้ว +25

      It requires more work than integrating lol

    • @blackpenredpen
      @blackpenredpen 6 ปีที่แล้ว +59

      Omar Farouk th-cam.com/video/e23vv1nQ0EQ/w-d-xo.html

    • @omarfarouk3848
      @omarfarouk3848 6 ปีที่แล้ว +42

      Omg blackpenredpen
      U r a superhero
      Honestly if i got this on exam
      I prefer a 0

  • @hassanshaikh3451
    @hassanshaikh3451 5 ปีที่แล้ว +302

    Everybody gangsta until flammable math pulls out the lambda

  • @MelonMediaMedia
    @MelonMediaMedia 5 ปีที่แล้ว +165

    Flammable: Intergrates the sqrt(tan(x))
    Desmos: Impossible

    • @jessstuart7495
      @jessstuart7495 5 ปีที่แล้ว +7

      Maxima:
      integrate(sqrt(tan(x)),x);
      (-log(tan(x)+sqrt(2)*sqrt(tan(x))+1)/2^(5/2)+log(tan(x)-sqrt(2)*sqrt(tan(x))+1)/2^(5/2)+atan((2*sqrt(tan(x))+sqrt(2))/sqrt(2))/2^(3/2)+atan((2*sqrt(tan(x))-sqrt(2))/sqrt(2))/2^(3/2))

  • @Mohammed_Angler
    @Mohammed_Angler 6 ปีที่แล้ว +264

    Whenever an integral involves sqrt you know that things are gonna go sqrrrrrt 🔥🔥

    • @TheTurtleOfGods
      @TheTurtleOfGods 4 ปีที่แล้ว +6

      i breathed really hard at this

  • @elver5041
    @elver5041 6 ปีที่แล้ว +111

    Me every tuesday: If that answer isn't right, then I'm going to hang myself in this very room.

    • @desertrainfrog1691
      @desertrainfrog1691 2 ปีที่แล้ว

      Everyday*

    • @de_oScar
      @de_oScar 2 ปีที่แล้ว

      *me writing 1=2 on purpose*
      oh no…
      anyway

  • @eta3323
    @eta3323 6 ปีที่แล้ว +306

    Please use me as your next substitution variable

    • @marcioamaral7511
      @marcioamaral7511 6 ปีที่แล้ว +47

      You're hard to draw!

    • @eta3323
      @eta3323 6 ปีที่แล้ว +20

      Márcio Amaral Thank you.

    • @eta3323
      @eta3323 6 ปีที่แล้ว +7

      Abhishek Minz Die Deutschen sind halt einfach die Besten!
      Hashtag proud to be German

    • @valentinidk6101
      @valentinidk6101 5 ปีที่แล้ว

      Ahh that's hawt

    • @executorarktanis2323
      @executorarktanis2323 5 ปีที่แล้ว +1

      What does zeta means

  • @blurb8397
    @blurb8397 5 ปีที่แล้ว +40

    I really think these improvised sessions are better at teaching integration than planned-out sessions
    Because we can really see how you think approaching these problems, and what can we try in similar situations.
    Thanks a lot Papa Flammy!

  • @twistedsector
    @twistedsector 5 ปีที่แล้ว +46

    Pro tip: instead of t^2 = tan x in the first step, use t^2 = 2 tan x. Also, use v = t - 2 and w = t + 2. This eliminates all the surdy bois

  • @debopamsil6965
    @debopamsil6965 6 ปีที่แล้ว +44

    I did this one in front of my class
    Took about 15 minutes
    So relieved to find that my answer was correct
    Dat's one filthy boi

  • @didyoustealmyfood8729
    @didyoustealmyfood8729 6 ปีที่แล้ว +155

    You Dope man my book says sqrt tanx cannot be integrated.

    • @Babidi123
      @Babidi123 6 ปีที่แล้ว +11

      konsi book use karta hai?

    • @morbidmanatee5550
      @morbidmanatee5550 6 ปีที่แล้ว +18

      Maxima says otherwise: -(sqrt(2)*log(tan(x)+sqrt(2)*sqrt(tan(x))+1)-sqrt(2)*log(tan(x)-sqrt(2)*sqrt(tan(x))+1)-2^(3/2)*atan((2*sqrt(tan(x))+sqrt(2))/sqrt(2))-2^(3/2)*atan((2*sqrt(tan(x))-sqrt(2))/sqrt(2)))/4

    • @restitutororbis964
      @restitutororbis964 6 ปีที่แล้ว +16

      ATHARV BHAGYA Flammy, defying books since 1547

    • @lBurn38l
      @lBurn38l 5 ปีที่แล้ว +12

      it can't be integrated by parts, maybe that's what your book meant ?

  • @danielfajardo963
    @danielfajardo963 6 ปีที่แล้ว +26

    Another way to solve this, flammy bois: let I = integral sqrt(tan(x)) dx and J = integral sqrt(cot(x)) dx. Evaluate I + J and I - J. Note that sin(2x) = 1 - (sin(x) - cos(x))^2 = (sin(x) + cos(x))^2 - 1. You should get to an equivalent answer in terms of sines and cosines.

  • @MathIguess
    @MathIguess 5 ปีที่แล้ว +12

    You are a brave man, my boi, doing such monsters for all the internet to see

  • @FGj-xj7rd
    @FGj-xj7rd 6 ปีที่แล้ว +52

    Thank you Flammable boi, very cool.

  • @wilhelmunkelbach3040
    @wilhelmunkelbach3040 6 ปีที่แล้ว +3

    great video, u integrated this quite nicely using simple techniques but still solving a difficult integral. one of your best vids imo

  • @not_vinkami
    @not_vinkami 6 ปีที่แล้ว +86

    It's time for you to differentiate this guy and see is that correct or not

  • @qarsiseer
    @qarsiseer 6 ปีที่แล้ว +12

    Early on papa writes + instead of - when completing the square but papa effortlessly sticks the landing 🙌🙌🙌

  • @ShenghuiYang
    @ShenghuiYang 6 ปีที่แล้ว +31

    I suggest this channel to be renamed to “Integral on Steroids”

  • @silvestrenet
    @silvestrenet 5 ปีที่แล้ว +3

    I first saw that integral in 1999, when I was taking my calculus class.
    It took me around 10 pages of my homework excercise book and around three times to solve it. Then I realized I missed some substitutions then corrected then .
    Voila everything fine!
    After that when I was going to buy a graphic calculator I used to used this integral as a bench. At that time only the hp49 was the only capable to solve this integral.
    Now I only remember few methods to solve integral but this video brought many remembrances about that moment.

  • @EpsilonBrain
    @EpsilonBrain 6 ปีที่แล้ว +8

    There’s an easier way, express 2t^2/(1+t^4) as (t^2+1+t^2-1)/(t^4+1) which becomes 2 integrals. (t^2+1)/(t^4+1) and the other one, this can be computed by dividing both top and bottom by t^2 and using the fact that t^2+1/t^2=(t-1/t)^2+2. A similar thing can be done with the second one. You end up integrating 1/u^2-2 and 1/u^2+2

  • @anegativecoconut4940
    @anegativecoconut4940 6 ปีที่แล้ว +38

    If you improvise so well, I don't know when you prepare the session.

  • @mohamednabil9146
    @mohamednabil9146 6 ปีที่แล้ว

    Your channel is amazing and I love each and every video. Its like a dopamine rush every time you get to the end especially when I try to solve in parallel and reach the same result. Keep going and wish you the best.

  • @gammaknife167
    @gammaknife167 6 ปีที่แล้ว +50

    but there's an easier way :'( Just sub t for e^u and divide top and bottom of the fraction through by e^2u. It becomes the sum of hyperbolic functions which are easy to integrate.

    • @kamarinelson
      @kamarinelson 6 ปีที่แล้ว +29

      Gamma Knife very, very nice. And with the right hyperbolic identities, the worst thing I had to integrate was a polynomial with 2 distinct linear factors in the denominator. 👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾👏🏾

    • @TavoLL1511
      @TavoLL1511 5 ปีที่แล้ว +1

      Can you explain a little more the e^u substitution. The term u being what? It's just that I'm integrating 1/sqrt(tanx) and I think your method might help. Thanks.

    • @jackweslycamacho8982
      @jackweslycamacho8982 4 ปีที่แล้ว

      @@TavoLL1511 bro just do the same substitution that pappa did you will get a t on the denominator and it will cancel with the t on the numerator, then do partial fractions

    • @workstation7101
      @workstation7101 3 ปีที่แล้ว

      how does it simplify?
      i mean with tan(e^u) you get e^e^u stuff which doesn't simplify

  • @skylardeslypere9909
    @skylardeslypere9909 6 ปีที่แล้ว +2

    15:02 you can write ln(...) instead of ln|...| because you're adding a square (always positive) and a positive number. So it's always positive, thus no absolute values needed

  • @AdityaGhosh50
    @AdityaGhosh50 6 ปีที่แล้ว +3

    I would like to suggest an easier method. After substituting t=√tanx, we write numerator as 2t^2 = 1+t^2 + t^2 -1
    Now we split into two integrals and divide by t^2 on both num and dem. Then we substitute t-1/t=u and t+1/t=k respectively. We get the solution easily. Without partial fractions or any lengthy calculations

  • @izakj5094
    @izakj5094 6 ปีที่แล้ว +42

    was this a freestyle boi?

  • @kushkumar1887
    @kushkumar1887 6 ปีที่แล้ว +5

    Well, you can write 2t^2 =(t^2+1)+(t^2-1).
    Then divide Numerator and denominator by t^2,
    Then adding +2 and-2 in denominator will give a very easy method to solve it.

  • @matthewzediker7579
    @matthewzediker7579 5 ปีที่แล้ว

    this is great! Improvising this showed me how you can think through a problem if you haven't seen it before... don't get that much at the university, especially me as an undergrad, but it's so important :) thanks!

  • @Jodabomb24
    @Jodabomb24 6 ปีที่แล้ว

    Imagine spending all that time differentiating that fucking monster and at the end all you get is tan^1/2

  • @ericthegreat7805
    @ericthegreat7805 6 ปีที่แล้ว +3

    At 6:20 you can add and subtract the missing derivative of the denominator so then you can just split this into integrals that give you arctan and ln directly.
    PS: In Canada we have been having a heat wave for the last month and a half :(

  • @JoJoJet100
    @JoJoJet100 6 ปีที่แล้ว

    "Add this bitch boi on both sides" I legit spat out my drink when you said that

  • @isuryashashank
    @isuryashashank 4 ปีที่แล้ว +2

    Another way:
    I = integral (sqrt(tanx) + sqrt(cotx))
    J = integral (sqrt(tanx) - sqrt(cotx))
    required integral = (I+J)/2
    I and J can be evaluated by decomposing into sin(x) and cos(x) and then a little manipulation.

    • @cooldawg2009
      @cooldawg2009 2 ปีที่แล้ว

      Could you elaborate on the manipulation further? I cant seem to make this method work

  • @CreativeStyled
    @CreativeStyled 6 ปีที่แล้ว

    You made me spit my food out laughing. "Let's be fucking bad ass. ".

  • @prachigoyal6979
    @prachigoyal6979 5 ปีที่แล้ว +1

    This in my country is considered a very basic problem for integration. Just divide the numerator and denominator by t^2 and in N^r add and subtract 1/t^2 and accordingly make D^r a perfect square.

    • @desertrainfrog1691
      @desertrainfrog1691 2 ปีที่แล้ว

      I suppose if you simply memorize unintuitive keys to common problems rather than solve it organically for the first time, it's probably quite easy.
      India I would guess?

  • @silasrodrigues1446
    @silasrodrigues1446 6 ปีที่แล้ว +2

    Thank you Flammy! But I dare you to write the arctan in terms of the LN function and see if the whole thing can be symplified by the end! Congrats from a brazilian boi that love your videos!

    • @gamma_dablam
      @gamma_dablam 4 ปีที่แล้ว

      Not sure arctan has a ln form.
      Artanh does though

  • @brisauce6944
    @brisauce6944 4 ปีที่แล้ว

    today i learned i could use "w" as a substitution variable instead of just reusing "u" and "v" and confusing myself
    thank you

    • @desertrainfrog1691
      @desertrainfrog1691 2 ปีที่แล้ว

      You can use literally any symbol. You can use a small drawing of a turtle if you want.

  • @guillaumedeplus7727
    @guillaumedeplus7727 6 ปีที่แล้ว +1

    Nice video dude as always keep it up !
    You might simplify the formula a bit,
    Since arctan(a) + arctan(b) = arctan( (a+b)/(1-ab))
    And also theres a way to make the logarithm look better
    You’ll have something like that :
    I = 2^(-1/2)*( Arctan(2a/2-a^2) + 1/2*ln( 1 + 2^(3/2)*t/(t^2 + 2^(1/2)*t +1)))

  • @enverko
    @enverko 6 ปีที่แล้ว +10

    3:31 Did Euleroid just smack you on the head? xD

  • @rajatkhandelwal7276
    @rajatkhandelwal7276 6 ปีที่แล้ว +1

    Thanks sir for stepping ahead towards my question

  • @loveoflyricism2769
    @loveoflyricism2769 4 ปีที่แล้ว

    Only flammable maths can make me integrate at 4:24 AM

  • @tastypie2276
    @tastypie2276 5 ปีที่แล้ว +1

    Thank you for teaching!

  • @Walczyk
    @Walczyk 4 ปีที่แล้ว

    that natural log factors in an interesting way: [(t-(-1/sqrt(2)+i/sqrt(2)))(t-(-1/sqrt(2)-i/sqrt(2)))]/[(t-(1/sqrt(2)-i/sqrt(2)))(t-(1/sqrt(2)+i/sqrt(2))] , t -> sqrt(2)*t , [(t+1-i)(t+1+i)]/[(t-1+i)(t-1-i)] now we can use the identity arctan(x)=1/(2i)*ln((x−i)/(x+i)) somehow to rewrite it in terms of arctangent.

  • @Gameboygenius
    @Gameboygenius 6 ปีที่แล้ว +2

    Papa Flammy confirmed to be a hot boi.

  • @ryansirimanne3011
    @ryansirimanne3011 6 ปีที่แล้ว

    classic! glad to see you integrate this boi.

  • @areebarian9342
    @areebarian9342 4 ปีที่แล้ว +1

    I love this board

  • @thomasblackwell9507
    @thomasblackwell9507 5 ปีที่แล้ว

    Looks like something Himmler would dream up.

  • @francescopiostriano4288
    @francescopiostriano4288 5 ปีที่แล้ว

    except the error you are a genius man

  • @depesci7133
    @depesci7133 4 ปีที่แล้ว

    I’m so happy to finally find someone who did it the same way as me

    • @jose4877
      @jose4877 3 ปีที่แล้ว

      lol. What is the other way of doing it?

  • @koponya25
    @koponya25 4 ปีที่แล้ว

    Everyone always forgets that fact sqrt(x) equeals to x^(1/2 )

  • @yashverma8278
    @yashverma8278 5 ปีที่แล้ว

    You can write the numerator 2t^2 as (t^2+1) +(t^2-1) then break it into 2 integrals and then in both divide by t^2 and put t+1/t =u in one of them and put t-1/t=z in second integral ...Then you don't have to apply partial fractions.

  • @manabunakamura1566
    @manabunakamura1566 6 ปีที่แล้ว +1

    A VERY LONG JOURNEY

  • @seang3550
    @seang3550 5 ปีที่แล้ว +2

    ok ill sub even tho the only integral i know is x where its (1/2)x^2

  • @itsanotheraccount
    @itsanotheraccount 5 ปีที่แล้ว

    I love your opening sounds

  • @SUMITYADAV-mt8xn
    @SUMITYADAV-mt8xn 5 ปีที่แล้ว +1

    Don't do partial fraction here @3:13 .split 2t^2 into (t^2-1)+(t^2+1) and then divide numerator and denominator by t^2.and substitute for t+1/t for term in first term and t-1/t for second term.and using this you can solve this integral in 5 minutes.and then thank me later.

  • @GermanSnipe14
    @GermanSnipe14 6 ปีที่แล้ว

    This nigga just fortnite danced on us I love you papa

  • @azmath2059
    @azmath2059 6 ปีที่แล้ว

    I think you've done this the hard way. From what I can remember there is a simpler solution, but well done!

  • @lucastellez2558
    @lucastellez2558 3 ปีที่แล้ว

    Came for the math, stayed for the hips

  • @tatjanagobold2810
    @tatjanagobold2810 6 ปีที่แล้ว +1

    Oh nice, a spontaneous boi

  • @holyshit922
    @holyshit922 6 ปีที่แล้ว

    This integral was calculated many times
    Try this integral
    Int(\frac{x}{\sqrt{\exp{x}+\left(x+2
    ight)^2}}\mbox{d}x)
    Wolfram claims that antiderivative cannot be expressed with elementary functions but it is not true
    My hints
    Add the zero to the integrand to be able to use linearity of integral
    Multiply integrand by one and then use substitution
    What is this zero and one ?
    Try to guess

  • @jeevanroy3409
    @jeevanroy3409 5 ปีที่แล้ว

    We can do that problem quiet easier........in the Int[2t^2/(t^4+1)] we can do 2t^2=(t^2+1)+(t^2-1).....and then seperate the terms and divide with 1/t^2 on numerator and denominator...... Then, t^2+1/t^2 = (t+1/t) ^2 -2 = (t-1/t)^2 -2........ Then take t+1/t =z & t-1/t =y ....... Then, find dz&dy...... And then write integral interms of z&y and apply formulae.........
    This is much better to eliminate writing plenty of steps........ Time saving method.😇.....
    We can do that problem in a different way...... Take √tanx=[(√tanx+√cotx)/2]+[(√tanx-√cotx) /2]......and then 2√tanx= {(sinx+cosx) /√sinxcosx}+{(sinx-cosx)/√sinxcosx}......
    Sinx.Cosx={[(Sinx+Cosx)^2-1]/2}
    ={[1-(sinx-cosx) ^2]/2}
    And find sinx+cosx=t .....find dt!
    Then sinx-cosx=z......find dz! And then,
    Write integral in terms of t&z....
    That's it... ✌
    May I get your mail ID!!!!!
    Atleast name in Facebook Or profile details...... 👨🏻📖
    Just to interact...... 😍

  • @merveilmeok2416
    @merveilmeok2416 5 ปีที่แล้ว

    This is how we landed a probe on Mars.

  • @alexismisselyn3916
    @alexismisselyn3916 5 ปีที่แล้ว +1

    17:23 heart started beating again

  • @holyshit922
    @holyshit922 6 ปีที่แล้ว +2

    You could also add these arctans

  • @dandoe2461
    @dandoe2461 6 ปีที่แล้ว +12

    u = tan(x) ma boi

  • @eccentricOrange
    @eccentricOrange 3 ปีที่แล้ว

    Commenting at 3:20
    Could you not write t² (1 / t⁴ +1)? You can the use arctangent and integrate by parts?
    (Will try on paper and update)

  • @justcurious7614
    @justcurious7614 5 ปีที่แล้ว +1

    Ich habe öffentliche Hänge so gerne und Du hast einen Fehler auf der vorletzten Zeile bei der 16:03 Marke im Video gemacht. Das "+1" im ersten mathematischen Begriff innerhalb der eckigen Klammern sollte auf "-1" korrigiert werden. Wird ein Programm für die Hinrichtung gedruckt, das andere öffentliche Vergnügungen und Ablenkungen für die Kinder anzeigt? Wir wollen die Kleinen nicht schockieren, wenn ein Mathematiker die Strafe erhält.Doch im Ernst, Du hast eine äußerst inspirierende mathematische Leistung vollbracht. Der einzige Fehler, den ich erkannt habe is ganz egal! Habe Dir diese Post auf Deutsch geschickt so dass die Sache nur unter vier Augen bleiben wird.

    • @justcurious7614
      @justcurious7614 5 ปีที่แล้ว +1

      Ich habe Ihren Kanal abonniert. Die mathematische Fähigkeit ist offensichtlich außergewöhnlich und Deine zufällige Witzchen sind auch gut zum Lachen.

    • @justcurious7614
      @justcurious7614 5 ปีที่แล้ว

      Und es erscheint dass unser Geheimnis nicht mehr geheim sei

  • @democrateur
    @democrateur 5 ปีที่แล้ว

    The answer I have is [ 1/√2 arcCtg( 1/√2 ( √Ctgx - √tgx ) ) - 1/√2 arCth( 1/√2 ( √Ctgx + √tgx ) ) ]
    th-cam.com/video/KF8Wrqc_vjw/w-d-xo.html
    It could be easily checked by differentiation.
    The Russian notations means:
    arcCtg ≡ acot ≡ cot^-1
    arCth ≡ acoth ≡ coth^-1
    Ctg ≡ cot
    tg ≡ tan

  • @shayanzahedi5735
    @shayanzahedi5735 5 ปีที่แล้ว

    You could substitute u=sqrt(cosx) then you differentiate both sides and give an expression of sinx in terms of u. Substitute everything in, then you only need to solve the integral of -2du and substitute back in.
    The solution is -sqrt(cosx). Ps: sqrt(tanx) = sqrt(sinx)/sqrt(cosx)

    • @cooldawg2009
      @cooldawg2009 2 ปีที่แล้ว

      Huh? When you solve for sin you have to take sqrt of dU… is that even possible?

    • @shayanzahedi5735
      @shayanzahedi5735 2 ปีที่แล้ว

      @@cooldawg2009 solve u = sqrt(cosx) for x and insert into sin when considering the differential du. Then you are good to go.

    • @cooldawg2009
      @cooldawg2009 2 ปีที่แล้ว

      @@shayanzahedi5735 i dont think that works. You have no way to get rid of the sinx that appears after taking derivative of sqrt(cosx)

  • @christophermadec2651
    @christophermadec2651 6 ปีที่แล้ว

    pls make more, we want 1h video of you struggling to solve disgusting boiii

  • @faresberarma3349
    @faresberarma3349 6 ปีที่แล้ว

    Hi Flammable Maths,
    Thanks for the video and this amazing integral, but there's too much complications that you can avoid them, after the first substitution you have to integrate (2u^2/1+u^4), here you can do a trick look:
    (2u^2/1+u^4)=(u^2+1+u^2-1)/(1+u^4) so you split the integral in two parts (u^2+1/u^4+1)+(u^2-1/u^4+1) wich are equal to ((1+1/u^2)/(u^2+1/u^2))+ ((1-1/u^2)/(u^2+1/u^2)) and now for the first term let v=u-1/u and for the second term let w=u+1/u then you have to intergate (dv/v^2+2)+(dw/w^2-2) too much easy to calculate
    I'm a big fun of you,
    Hope you appreciate my method
    Bye

  • @Absilicon
    @Absilicon 6 ปีที่แล้ว +9

    I was going to post the mistake at 16:03, but someone beat me to it. I guess I'll have to watch your videos quicker

  • @jonbovi-69
    @jonbovi-69 5 ปีที่แล้ว +1

    Can you solve the integral of square root of sin x using the elliptic integral??

  • @pranjaldas1762
    @pranjaldas1762 5 ปีที่แล้ว

    It was amazing man

  • @architsharma9836
    @architsharma9836 6 ปีที่แล้ว +4

    Instead of partial fraction u can use algebric twins.

    • @cooldawg2009
      @cooldawg2009 2 ปีที่แล้ว

      What is Algebraic twins method?

  • @souradeep3862
    @souradeep3862 4 ปีที่แล้ว

    U could have used the 2t^2 like t^2+1 and t^2 -1..to have avoided the partial fractions.....(btw it's really good I got someone like you teaching me maths ...)

  • @mipmip4575
    @mipmip4575 6 ปีที่แล้ว

    2:34 You have committed crimes against BOIrim

  • @homelessgee957
    @homelessgee957 3 ปีที่แล้ว

    "...Is nothing but..."

  • @azizshaikh5068
    @azizshaikh5068 6 ปีที่แล้ว

    Multiply the numerator and denominator by sec^2x den it comes to a 5 min problem

  • @desertrainfrog1691
    @desertrainfrog1691 2 ปีที่แล้ว

    Now for the fifth root of tan(x)

  • @Oskar-zt9dc
    @Oskar-zt9dc 4 ปีที่แล้ว

    Beim Ln brauchst du kein Betrag weil alles positiv ist durch das Quadrat

  • @thomasblackwell9507
    @thomasblackwell9507 5 ปีที่แล้ว

    You complain about the heat, well, it was over 96 degrees F with 80% humidity today. However, I remember when I was working for the Arizona Department of Transportation that it got over 127 degrees F with little to no humidity and we were working outside all day long! The surface temperature of the AC was over 165 degrees F. I know because I had a thermometer.

  • @Giogro
    @Giogro 3 ปีที่แล้ว +1

    10:30 chalk ASMR

  • @restitutororbis964
    @restitutororbis964 6 ปีที่แล้ว

    Jesus christ, someone told me to try and integrate this clusterfuck. I never got to integrate it except the first substitution part after that I got stuck.

  • @bahaloicperrial8964
    @bahaloicperrial8964 10 หลายเดือนก่อน

    Like i did the intégration it was pretty fun ❤

  • @anubhavraj1869
    @anubhavraj1869 4 ปีที่แล้ว +2

    This question came in cbse class 12th exam!! Eazy question 😂😂

  • @pulkitmohta8964
    @pulkitmohta8964 3 ปีที่แล้ว

    15:52 he went from tan to ta

  • @devankitshukla1370
    @devankitshukla1370 4 ปีที่แล้ว +1

    In Indian students are solving this question in high school/12th standard

  • @fabriziodutto7508
    @fabriziodutto7508 5 ปีที่แล้ว

    beware of -1/2 and +1/2, after changing the sign inside the binomial squared: the result changes... @7:56

  • @prydin
    @prydin 6 ปีที่แล้ว

    Pretty impressive!

  • @GhostyOcean
    @GhostyOcean 6 ปีที่แล้ว

    Couldn't you skip a bunch of work @ 2:56 by using integration by parts? Int(t*2t/(1+(t^2)^2)dt)=t*arctan(t^2)+int(arctan(t^2)dt) then do another substitution?

  • @jackwagner5922
    @jackwagner5922 6 ปีที่แล้ว +7

    INTEGRATE SIN(X)^X !!!!

    • @restitutororbis964
      @restitutororbis964 6 ปีที่แล้ว

      Jack Wagner Its probably going to be similar to his x^-x, just using a mclaurin series of sinx or some spicy stuff like that, but it does look like a very challenging problem.

    • @HilbertXVI
      @HilbertXVI 6 ปีที่แล้ว +4

      Jack Wagner Most probably non elementary

  • @billtruttschel
    @billtruttschel 5 ปีที่แล้ว +1

    Did I catch a "bitch boi" at 2:05?

  • @paulraj7573
    @paulraj7573 6 ปีที่แล้ว

    a salute to this guy

  • @धीरजमौर्य-फ3ण
    @धीरजमौर्य-फ3ण 3 ปีที่แล้ว

    Amazing

  • @aliozgul3906
    @aliozgul3906 4 ปีที่แล้ว +1

    It's a good subject, very nice. I am looking for a different solution method for this integral. If I can fix it, I will post it on my youtube channel soon.

  • @jemcel0397
    @jemcel0397 6 ปีที่แล้ว

    5:12 Electro Shuffle
    5:13 Floss
    5:16 Fresh
    Ohh Papa Flammy. I see what you did there.
    BTW, I got lost into your substitution int the part where you squared t and tan(x) twice. Can you repeat or explain the process again?

    • @lemurpotatoes7988
      @lemurpotatoes7988 6 ปีที่แล้ว

      Are you talking about the part about 2 minutes in?
      1=secx^2 - tanx^2, so secx^2=1+tanx^2. And from the very first line of work, t=sqrt(tanx). So secx^2=1+t^4.
      If not, give a timestamp.

    • @jemcel0397
      @jemcel0397 6 ปีที่แล้ว

      Lemur Potatoes i'm talking about that one. Did he squared it in order to utilize the trig identities?

  • @maximilliansayre5403
    @maximilliansayre5403 5 ปีที่แล้ว

    That was badass

  • @Armytechrex
    @Armytechrex 6 ปีที่แล้ว +2

    papa euler would get pissed off >:v

  • @arvindcmkv
    @arvindcmkv 5 ปีที่แล้ว

    Just a very very very small mistake that in the first term there should be - 1 in place of +1. But please don't mind. It is still very good work of you.

  • @hbowman108
    @hbowman108 3 ปีที่แล้ว

    The most impressively ridiculous way to factor a quartic is the Ferrari solution. This one has no real roots, so the resolvent cubic should have only one root....