England 🏴󠁧󠁢󠁥󠁮󠁧󠁿 Math Olympiad 2009 - Algebra - Find f(x)??

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 19

  • @MathAPlus
    @MathAPlus  ปีที่แล้ว

    World 🌎 International Math Olympiad 2019 - Algebra - Find f(x)?! Boost Your Confidence 😆
    th-cam.com/video/M8MMf8pm0FM/w-d-xo.html

  • @danilmylnikov123
    @danilmylnikov123 ปีที่แล้ว

    I think I got good solution that doesn't use any of f(number). Putting x, - x and 2x in pairs instead of x and y you have a great system of equations. And the result is the same: 1 + x and 1 - x

  • @shortstick4373
    @shortstick4373 ปีที่แล้ว +1

    I got to the f(1)f(-1) = 0 on my own but no matter how much i toyed with it i couldnt get to the solution

  • @Zonnymaka
    @Zonnymaka ปีที่แล้ว

    Interesting. First he proves that f(x) cannot be zero for any x (6:18), then he goes on to claim this 7:34 😇
    As far as i can see (frankly speaking i couldn't find any other way to solve the problem), i have to claim that f(x)=f(-x). That leads me to y=-x, hence f(x)=+-sqrt(1-x^2) where f: ]-1,1[ --> ]0,+-1].

    • @ayushrudra8600
      @ayushrudra8600 ปีที่แล้ว

      No at 6:18 he is proving that f(x) is not zero for all x

  • @sbjf
    @sbjf ปีที่แล้ว

    lol I used truncated taylor series

    • @pitreason
      @pitreason ปีที่แล้ว

      In order to use taylor expansion you need to know that the function is differentiable, and there is no such condition given in the problem

  • @jamie31415
    @jamie31415 ปีที่แล้ว +1

    Please don’t call it the England maths olympiad. Britain is much more than just England.

    • @MathAPlus
      @MathAPlus  ปีที่แล้ว

      Indeed! Thanks 🙏

  • @comdo777
    @comdo777 ปีที่แล้ว

    answer=xy

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 ปีที่แล้ว +1

    From [f(x)][1-f(0)]=0 --> f(0)=1
    But not f(x)=0 and it is explained why it is so. I agree that f(x)=0 does not aplly for any x.
    Now consider x≠0 and y=0:
    [f(x≠0)]f(0)=f(x≠0)
    --> [(f(x≠0)][1-f(0)]=0
    f(0)=1 or f(x≠0)=0
    Therefore f(x)=1 for x=0
    =0 otherwise
    Kindly give your comment sir.

    • @sanidhyavijay2281
      @sanidhyavijay2281 ปีที่แล้ว

      what about when both(x&y) are 0?

    • @nasrullahhusnan2289
      @nasrullahhusnan2289 ปีที่แล้ว

      @@sanidhyavijay2281: Two solutions you get: f(x)=1+x and f(x)=1-x both give f(0)=1. If x=y=0 LHS=[f(0)][f(0)]=1(1)=1 and RHS=f(0)=1.
      The same result will be obtained with
      f(x)=1 for x=0
      =0 otherwise
      as LHS=[f(0)][f(0)]=1(1)=1 and RHS=f(0)=1

  • @dandeleanu3648
    @dandeleanu3648 ปีที่แล้ว +3

    You have already proved f(0)=1 now let y = -x
    f(x)f(-x) = f(x-x) - x^2 = f(0) - x^2 = 1- x^2 = (1-x)(1+x)
    clearly f(x) = 1- x or f(x) = 1+x
    q.e.d.

    • @Zonnymaka
      @Zonnymaka ปีที่แล้ว

      Very nice! For some reason, i assumed immediately that it had to be even so in the end i reached [f(x)]^2=1-x^2 and y=-x. That did blind me 😞

    • @dandeleanu3648
      @dandeleanu3648 ปีที่แล้ว

      @@Zonnymaka thanks

    • @Wurfenkopf
      @Wurfenkopf ปีที่แล้ว

      That's a nice way to find some solutions, but you didn't prove that there aren't others

    • @RafaelB1717
      @RafaelB1717 ปีที่แล้ว +2

      8 * 1 = 4 * 2. It doesn't mean 8 = 4 and 1 = 2.

    • @dandeleanu3648
      @dandeleanu3648 ปีที่แล้ว

      @@RafaelB1717It is possible to add and prove that indeed the solution fulfills the condition imposed