ไม่สามารถเล่นวิดีโอนี้
ขออภัยในความไม่สะดวก

Eigenfunction expansions

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ธ.ค. 2020
  • WEB: faculty.washin...
    This lecture is part of a series on advanced differential equations: asymptotics & perturbations. This lecture introduces linear operators for solving Lu=f where the eigenfunctions of the operator L are used to construct solutions.

ความคิดเห็น • 21

  • @jimlbeaver
    @jimlbeaver 3 ปีที่แล้ว +8

    It was extremely helpful to see the correspondence with the linear algebra side. I haven’t seen them side by side like this. Thanks

  • @warr2015
    @warr2015 ปีที่แล้ว +1

    Excellent video. Watched for a more in-depth look at EV Expansions for my QM class.

  • @miro.s
    @miro.s 3 ปีที่แล้ว +1

    Nice example of generalized Gramm-Schmidt orthogonalization in new transformed space expressed in natural basis. Then regarding to that basis we need only to add lamda.

  • @olivermechling7975
    @olivermechling7975 2 ปีที่แล้ว

    Hi Nathan, your explanations help out a lot! Very concise presentation, I learned a lot. Thanks!

  • @inothernews
    @inothernews 3 ปีที่แล้ว +10

    Thanks for the lecture, it's great. Can I check if the solution to the ODE is correct? Seems like it should be sin/cos of sqrt(lambda)* x (instead of lambda* x). If there is in fact a typo, then the eigenvalues should also be (n pi / l ) ^2, that's the only result that is affected I think.

    • @miro.s
      @miro.s 3 ปีที่แล้ว +1

      Generally and imprecisely, it is possible to write lambda instead of sqrt(lambda), to have simple and pretty form as it can happen throughout all Math, but new lambda is not eigenvalue anymore. And the result should be then eigenvalue=lamda^2

    • @ludviglundgren7353
      @ludviglundgren7353 2 ปีที่แล้ว +1

      @@miro.s thanks for that clarification

  • @subhrohalder4104
    @subhrohalder4104 2 หลายเดือนก่อน

    Excellent video:)

  • @sunghyunkim3881
    @sunghyunkim3881 3 ปีที่แล้ว

    20:05, the summation is from -\inf to +\inf since the dummy index represents for the all possible non-trivial sol's in trig.(sin) function

  • @bonbonpony
    @bonbonpony 6 วันที่ผ่านมา

    Yeah, that's great, but in order to do all that, we need to have the eigenfunctions and eigenvalues first. For matrices, there's at least an algorithm for that. But how are we supposed to do that with differential operators? :q

  • @user-co5ob1fv1m
    @user-co5ob1fv1m 3 ปีที่แล้ว

    Very much helpful ! thank you so much sir👍

  • @nikkatalnikov
    @nikkatalnikov 8 หลายเดือนก่อน

    brilliant explanation

  • @sinahamedi2786
    @sinahamedi2786 3 ปีที่แล้ว +1

    You mentioned that using eigenvalues is an easier way of getting Ax=b solution and explained that we should build the sigma expression from right-hand-side to calculate u(x); however, when it comes to the example, you just say the equation looks familiar and the answer is sin(x)+cos(x). If we want to guess the solution at the end, what is the point of using eigen values/functions?

    • @jamesmarshel1723
      @jamesmarshel1723 3 ปีที่แล้ว

      He used the eigenvalue problem Ax=cx to find the eigenfunctions. The solution to this problem is well known in this case. Then he uses the normalized eigenfunctions to find the solution to Ax=b by expanding x in terms of the normalized eigenfunctions. In general, this technique is based on the idea of “using a known result “ (i.e. the solution to the eigenvalue problem) or “solving a simpler problem “ (i.e. the eigenvalue problem). See Larson or Poyas on mathematical problem solving. It will change your life.

    • @bonbonpony
      @bonbonpony 6 วันที่ผ่านมา +1

      Yeah, decomposition with inner products is the obvious part. Finding the eigenfunctions and eigenvalues of a particular differential operator (especially when the coefficients are not constant) is the hard part, and no one seems to be explaining that. Without it, all the rest is pretty much useless.

  • @AlirezaSafaee
    @AlirezaSafaee 2 ปีที่แล้ว

    Apparently, at 22:14 there is a sin function missing in the formula for Wronskian.

  • @hareshsingh8168
    @hareshsingh8168 ปีที่แล้ว

    Thanks.

  • @alfredomaussa
    @alfredomaussa 3 ปีที่แล้ว

    fourier series, fourier transform, laplace transform, green functions... what's missing?

  • @kyrilo1993
    @kyrilo1993 2 ปีที่แล้ว

    sorry if i missed something but is the end result the fourier series expansion of the function ?

    • @shoopinc
      @shoopinc 4 หลายเดือนก่อน

      Kinda but not really, Fourier uses complex exponential basis. However the analog of those elements here are the eigenfunctions of the operator itself, solution is written as a sum of the eigenfunctions it is therefore operator dependent what your expansion is.

  • @dbf72829
    @dbf72829 3 ปีที่แล้ว

    Thanks more qm content please??