Poland Math Olympiad Problem | A Nice Geometry Challenge

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 พ.ย. 2024

ความคิดเห็น • 19

  • @forest1453
    @forest1453 11 หลายเดือนก่อน +1

    You can also reflect the triangle about BC to form a triangle with an inscribed circle.
    Then the formula A=Pr/2 can be applied, where A is the area of the large triangle, P is its perimeter, and r is the required radius.
    We have that 6(2r+1)/2=r(2sqrt((2r+1)^2+9)+6)/2, which ultimately boils down to the cubic equation 2r^3+r^2-9=0, yielding the solution r=3/2.

  • @MarieAnne.
    @MarieAnne. 11 หลายเดือนก่อน +4

    I started off the same way you did with Pythagorean theorem in △OEC
    r² + x² = (r+1)²
    r² + x² = r² + 2r + 1
    x² = 2r + 1
    But then, instead of using similar triangles, I used Pythagorean theorem in △ABC
    3² + (2r+1)² = (x+3)²
    9 + (x²)² = x² + 6x + 9
    x⁴ − x² − 6x = 0
    x (x³ − x − 6) = 0
    Ignoring solution x = 0 (which would give r = −1/2), we get
    x³ − x − 6 = 0 → (same equation we get by using similar triangles)
    (x − 2) (x² + 2x + 3) = 0
    The quadratic factor has no real solutions, we get
    x = 2
    2r + 1 = x² = 4
    2r = 3
    r = 3/2

    • @eugenjean
      @eugenjean 10 หลายเดือนก่อน

      Your English is so bad

    • @eugenjean
      @eugenjean 10 หลายเดือนก่อน

      Were you learn to write "r"?

  • @vacuumcarexpo
    @vacuumcarexpo 11 หลายเดือนก่อน

    I solved this as follows:
    Let B' be a point with AB'=3+r on the extended line of AB.
    Let C' be a point with BC//B'C' on the extended line of AC.
    The upper half of the inscribed circle of △AB'C' is equivalent to the given semi-circle.
    AB'=r+3
    B'C'=(2r+1)(r+3)/3
    AC'^2=AB'^2+B'C'^2
    AB'+B'C'-AC'=2r
    You can get a cubic equation of r from these equations.
    2r^3+r^2-9=0
    ⇔(2r-3)(r^2+2r+3)=0
    ⇒r=3/2(∵r∈R+)

  • @zdrastvutye
    @zdrastvutye 11 หลายเดือนก่อน

    i have applied the thales theorem. that's a sophisticated nested calculation:
    10 l1=1:l2=3:nu=29:dim x(2),y(2):sw=(l1+l2)/100:xs=sw:nl=sqr(l1^2+l2^2):goto 120
    20 z1=ys*l1:z2=l2*(xs-l1):dfu1=(z1+z2)/2/(l2-ys)/nl
    30 dfu2=(xs^2+ys^2)/2/xs/nl:df=dfu1-dfu2:return
    40 ys=sw:gosub 20
    50 df1=df:ys1=ys:ys=ys+sw:if ys>l2 then stop
    60 ys2=ys:gosub 20:if df1*df>0 then 50
    70 ys=(ys1+ys2)/2:gosub 20:if df1*df>0 then ys1=ys else ys2=ys
    80 if abs(df)>1E-10 then 70
    90 r=(xs^2+ys^2)/2/xs:rt=(r+l1)/2:xmt=r+rt
    100 dgu1=(xs-xmt)^2/nl^2:dgu2=ys^2/nl^2:dgu3=rt^2/nl^2:dg=dgu1+dgu2-dgu3
    110 return
    120 gosub 40
    130 xs1=xs:dg1=dg:xs=xs+sw:rem if xs>l1 then stop
    140 xs2=xs:gosub 40:if dg1*dg>0 then 130
    150 xs=(xs1+xs2)/2:gosub 40:if dg1*dg>0 then xs1=xs else xs2=xs
    160 if abs(dg)>1E-10 then 150
    170 print r:mass=1000/nl:x(1)=r*2+l1:y(1)=0:x(2)=0:y(2)=l2:goto 190
    180 xb=x*mass:yb=y*mass:return
    190 xba=0:yba=0:for a=1 to 3:ia=a:if ia=3 then ia=0
    200 x=x(ia):y=y(ia):gosub 180:xbn=xb:ybn=yb:goto 220
    210 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    220 gosub 210:next a:xm=r:ym=0:ru=r:goto 260
    230 x=xm+ru:y=0:gosub 180:xba=xb:yba=yb:for a=1 to nu:wa=a/nu*pi
    240 dx=ru*cos(wa):x=xm+dx:dy=ru*sin(wa):y=ym+dy:gosub 180:xbn=xb:ybn=yb
    250 gosub 210:next a:return
    260 gcol 7:gosub 230:xm=xmt:ru=rt:gcol 9:gosub 230
    1.5
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @זאבגלברד
    @זאבגלברד 11 หลายเดือนก่อน

    If you write sin of angle C in two ways , you get 4R^4 + 4r^3 + R^2 - 18R - 9 = 0 and you can find that R= 3/2 is a root. Then devide the polinom by (R - 1.5) and you get 4R^3 +10R^2 +16R +6 and this polinom is increasing for all R [based on its derivative] , and for R=0 it is 6 so it has one negative root.

    • @gibbogle
      @gibbogle 11 หลายเดือนก่อน

      How can you find that R = 3/2 is a root? That is the crux of the problem. I know it is a root, and the solution, but how to get it except by guesswork?

    • @זאבגלברד
      @זאבגלברד 11 หลายเดือนก่อน

      Are you aware of the theorm regarding the possible rational roots ?@@gibbogle

    • @gibbogle
      @gibbogle 11 หลายเดือนก่อน

      @@זאבגלברד No.

  • @murdock5537
    @murdock5537 11 หลายเดือนก่อน +2

    3-4-5-triple 🙂

  • @JSSTyger
    @JSSTyger 11 หลายเดือนก่อน +1

    8:46 is where I have a problem. Its trial and error here.

    • @gibbogle
      @gibbogle 11 หลายเดือนก่อน +1

      Exactly!

    • @zanti4132
      @zanti4132 11 หลายเดือนก่อน +1

      To make this look less like a lucky guess, let's go down a slightly different path. So far we have x³ = 6 + x. Now continue:
      x³ - x = 6
      x(x² - 1) = 6
      x(x+1)(x-1) = 6
      So we need three numbers that differ by 1 (basically an arithmetic sequence) whose product is 6. Clearly, the numbers have to be 1, 2, 3. Now, you can argue it's lucky this was so easy to see, but then any result that wasn't easy to see would require finding the roots of a cubic, and surely the creators of the test wouldn't expect you to do THAT, right? 😊

  • @yakupbuyankara5903
    @yakupbuyankara5903 11 หลายเดือนก่อน +1

    R=3/2.

  • @aidasulejmani8425
    @aidasulejmani8425 11 หลายเดือนก่อน

    Bravo

  • @АлександрКазаков-щ2й
    @АлександрКазаков-щ2й 11 หลายเดือนก่อน

    Which olympiad is that? Task is suspiciously similar to the one in th-cam.com/video/K9VKCfYPHiE/w-d-xo.htmlsi=uJNXuXeRv0my6W0L. If you are taken somebody's else task it would be fair to leave a reference to this video.

  • @eugenjean
    @eugenjean 10 หลายเดือนก่อน +1

    Square, not esquiee

  • @gibbogle
    @gibbogle 11 หลายเดือนก่อน +1

    You should have stopped when you got x = 2, which was a lucky guess.